L(s) = 1 | + (3.30 − 3.30i)2-s − 5.84i·4-s + (33.1 − 33.1i)7-s + (33.5 + 33.5i)8-s − 55.3·11-s + (161. + 161. i)13-s − 219. i·14-s + 315.·16-s + (278. − 278. i)17-s + 179. i·19-s + (−182. + 182. i)22-s + (−398. − 398. i)23-s + 1.07e3·26-s + (−193. − 193. i)28-s − 547. i·29-s + ⋯ |
L(s) = 1 | + (0.826 − 0.826i)2-s − 0.365i·4-s + (0.676 − 0.676i)7-s + (0.524 + 0.524i)8-s − 0.457·11-s + (0.958 + 0.958i)13-s − 1.11i·14-s + 1.23·16-s + (0.965 − 0.965i)17-s + 0.498i·19-s + (−0.377 + 0.377i)22-s + (−0.752 − 0.752i)23-s + 1.58·26-s + (−0.247 − 0.247i)28-s − 0.650i·29-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.525+0.850i)Λ(5−s)
Λ(s)=(=(225s/2ΓC(s+2)L(s)(0.525+0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.525+0.850i
|
Analytic conductor: |
23.2582 |
Root analytic conductor: |
4.82267 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(118,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :2), 0.525+0.850i)
|
Particular Values
L(25) |
≈ |
3.509344957 |
L(21) |
≈ |
3.509344957 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−3.30+3.30i)T−16iT2 |
| 7 | 1+(−33.1+33.1i)T−2.40e3iT2 |
| 11 | 1+55.3T+1.46e4T2 |
| 13 | 1+(−161.−161.i)T+2.85e4iT2 |
| 17 | 1+(−278.+278.i)T−8.35e4iT2 |
| 19 | 1−179.iT−1.30e5T2 |
| 23 | 1+(398.+398.i)T+2.79e5iT2 |
| 29 | 1+547.iT−7.07e5T2 |
| 31 | 1−1.53e3T+9.23e5T2 |
| 37 | 1+(−1.66e3+1.66e3i)T−1.87e6iT2 |
| 41 | 1−307.T+2.82e6T2 |
| 43 | 1+(104.+104.i)T+3.41e6iT2 |
| 47 | 1+(346.−346.i)T−4.87e6iT2 |
| 53 | 1+(2.02e3+2.02e3i)T+7.89e6iT2 |
| 59 | 1−2.85e3iT−1.21e7T2 |
| 61 | 1+1.05e3T+1.38e7T2 |
| 67 | 1+(3.75e3−3.75e3i)T−2.01e7iT2 |
| 71 | 1+1.42e3T+2.54e7T2 |
| 73 | 1+(813.+813.i)T+2.83e7iT2 |
| 79 | 1−4.85e3iT−3.89e7T2 |
| 83 | 1+(1.31e3+1.31e3i)T+4.74e7iT2 |
| 89 | 1−5.18e3iT−6.27e7T2 |
| 97 | 1+(3.49e3−3.49e3i)T−8.85e7iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54732851941957759558373224133, −10.78161526033274485183844726136, −9.828357063166986677878408926373, −8.310824417953207435416675563812, −7.53349567675609078341672617129, −6.00321153879035799589550551748, −4.67938008087282857405080999282, −3.93239174201237433102766955406, −2.55883133983498877921029442982, −1.17598293090456730018618480934,
1.31507940831095281010337193121, 3.22662499145853306147369668345, 4.62428100242563282904142318084, 5.61461119493455474941683672478, 6.26149694854711837224983402248, 7.76991249108865868247502742261, 8.335194081494378176646535214084, 9.894354372083985546191315586636, 10.79054868696523020745866168907, 11.95545548300864286612832235071