L(s) = 1 | + 4i·4-s + (6.12 − 6.12i)7-s + (18.3 + 18.3i)13-s − 16·16-s + 37i·19-s + (24.4 + 24.4i)28-s + 13·31-s + (48.9 − 48.9i)37-s + (−42.8 − 42.8i)43-s − 26i·49-s + (−73.4 + 73.4i)52-s + 47·61-s − 64i·64-s + (−55.1 + 55.1i)67-s + (−97.9 − 97.9i)73-s + ⋯ |
L(s) = 1 | + i·4-s + (0.874 − 0.874i)7-s + (1.41 + 1.41i)13-s − 16-s + 1.94i·19-s + (0.874 + 0.874i)28-s + 0.419·31-s + (1.32 − 1.32i)37-s + (−0.996 − 0.996i)43-s − 0.530i·49-s + (−1.41 + 1.41i)52-s + 0.770·61-s − i·64-s + (−0.822 + 0.822i)67-s + (−1.34 − 1.34i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.52940 + 0.754453i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.52940 + 0.754453i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 4iT^{2} \) |
| 7 | \( 1 + (-6.12 + 6.12i)T - 49iT^{2} \) |
| 11 | \( 1 + 121T^{2} \) |
| 13 | \( 1 + (-18.3 - 18.3i)T + 169iT^{2} \) |
| 17 | \( 1 - 289iT^{2} \) |
| 19 | \( 1 - 37iT - 361T^{2} \) |
| 23 | \( 1 + 529iT^{2} \) |
| 29 | \( 1 - 841T^{2} \) |
| 31 | \( 1 - 13T + 961T^{2} \) |
| 37 | \( 1 + (-48.9 + 48.9i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 1.68e3T^{2} \) |
| 43 | \( 1 + (42.8 + 42.8i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 - 2.20e3iT^{2} \) |
| 53 | \( 1 + 2.80e3iT^{2} \) |
| 59 | \( 1 - 3.48e3T^{2} \) |
| 61 | \( 1 - 47T + 3.72e3T^{2} \) |
| 67 | \( 1 + (55.1 - 55.1i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 5.04e3T^{2} \) |
| 73 | \( 1 + (97.9 + 97.9i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 142iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 6.88e3iT^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 + (-67.3 + 67.3i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99080404864843652717816924119, −11.35602992382191588380815137763, −10.39289472059488422718435270236, −8.988999610558165170394078475791, −8.142171385826094989718768809993, −7.32132949113411951999078432820, −6.12525509673938296103959745486, −4.36338157308747118081352390111, −3.69473738151865981957809564848, −1.68749466644631709000146762114,
1.09268844859616997300644226410, 2.73995763901192192210472662713, 4.71982615641361271262246974519, 5.58323240504541480017343384588, 6.54463281342431248781369248283, 8.121907735713472106111504316050, 8.879284116567907814526998344346, 10.00013119634411952392041342719, 11.08733197830568878874939104636, 11.49442388404282552959043392896