L(s) = 1 | + (2.44 + 2.44i)2-s + 7.99i·4-s + (6.12 + 6.12i)7-s + (−9.79 + 9.79i)8-s − 6·11-s + (3.67 − 3.67i)13-s + 29.9i·14-s − 15.9·16-s + (−17.1 − 17.1i)17-s + 23i·19-s + (−14.6 − 14.6i)22-s + (12.2 − 12.2i)23-s + 18·26-s + (−48.9 + 48.9i)28-s − 6i·29-s + ⋯ |
L(s) = 1 | + (1.22 + 1.22i)2-s + 1.99i·4-s + (0.874 + 0.874i)7-s + (−1.22 + 1.22i)8-s − 0.545·11-s + (0.282 − 0.282i)13-s + 2.14i·14-s − 0.999·16-s + (−1.00 − 1.00i)17-s + 1.21i·19-s + (−0.668 − 0.668i)22-s + (0.532 − 0.532i)23-s + 0.692·26-s + (−1.74 + 1.74i)28-s − 0.206i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.31989 + 2.67565i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31989 + 2.67565i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-2.44 - 2.44i)T + 4iT^{2} \) |
| 7 | \( 1 + (-6.12 - 6.12i)T + 49iT^{2} \) |
| 11 | \( 1 + 6T + 121T^{2} \) |
| 13 | \( 1 + (-3.67 + 3.67i)T - 169iT^{2} \) |
| 17 | \( 1 + (17.1 + 17.1i)T + 289iT^{2} \) |
| 19 | \( 1 - 23iT - 361T^{2} \) |
| 23 | \( 1 + (-12.2 + 12.2i)T - 529iT^{2} \) |
| 29 | \( 1 + 6iT - 841T^{2} \) |
| 31 | \( 1 - 25T + 961T^{2} \) |
| 37 | \( 1 + (24.4 + 24.4i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 60T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-60.0 + 60.0i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (7.34 + 7.34i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-24.4 + 24.4i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 18iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 37T + 3.72e3T^{2} \) |
| 67 | \( 1 + (25.7 + 25.7i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 132T + 5.04e3T^{2} \) |
| 73 | \( 1 + (24.4 - 24.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 10iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (2.44 - 2.44i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 132iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-23.2 - 23.2i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.54931609004921637395187581488, −11.82854918549371848399205491525, −10.66148781274275470434284595138, −8.958321007283697377248895314114, −8.098513317015904372407622648540, −7.18408848523524831620009154164, −5.94963851198936088537347123490, −5.21695811026559732085479599226, −4.20837470804404606862626668567, −2.59808333354384203725002009685,
1.31513936021459234549442556532, 2.74111739385482804770287422619, 4.20246612758976653161383971469, 4.80162278849052333867531690604, 6.16158494089096047510498295222, 7.56181991852146259686481541420, 8.961731728743597794247281365637, 10.34870494664083020946274555887, 10.98861523980249060461426416409, 11.52888961236261084817115298215