L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.866 − 1.5i)3-s + (−0.500 + 0.866i)4-s + 1.73i·6-s + (2.59 − 1.5i)7-s − 3i·8-s + (−1.5 − 2.59i)9-s + (1 + 1.73i)11-s + (0.866 + 1.5i)12-s + (1.73 + i)13-s + (−1.5 + 2.59i)14-s + (0.500 + 0.866i)16-s − 4i·17-s + (2.59 + 1.5i)18-s + 8·19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.499 − 0.866i)3-s + (−0.250 + 0.433i)4-s + 0.707i·6-s + (0.981 − 0.566i)7-s − 1.06i·8-s + (−0.5 − 0.866i)9-s + (0.301 + 0.522i)11-s + (0.249 + 0.433i)12-s + (0.480 + 0.277i)13-s + (−0.400 + 0.694i)14-s + (0.125 + 0.216i)16-s − 0.970i·17-s + (0.612 + 0.353i)18-s + 1.83·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 + 0.397i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.917 + 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.04822 - 0.217409i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.04822 - 0.217409i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 1.5i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-2.59 + 1.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.73 - i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4iT - 17T^{2} \) |
| 19 | \( 1 - 8T + 19T^{2} \) |
| 23 | \( 1 + (2.59 + 1.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4iT - 37T^{2} \) |
| 41 | \( 1 + (2.5 - 4.33i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.92 - 4i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.06 - 3.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 2iT - 53T^{2} \) |
| 59 | \( 1 + (7 - 12.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.59 + 1.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 - 4iT - 73T^{2} \) |
| 79 | \( 1 + (3 + 5.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.79 + 4.5i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 15T + 89T^{2} \) |
| 97 | \( 1 + (1.73 - i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.07802479609158136582253854710, −11.50227629745020673884248933243, −9.864549335628471389833744011795, −9.062248999002875606993402376261, −7.968780208217688930806018493554, −7.51386289938755394923643911101, −6.53159072992239292963102843242, −4.70770831648353199562520420336, −3.27877565443137169676674328242, −1.29092685980446188214799950289,
1.77190946552616613835539648406, 3.49208418543190910432014017075, 5.01176078281149394015673956521, 5.75790584858429441523721573098, 7.912352711906511156333769662445, 8.578638647989805930346787557363, 9.375817695707002706557743251260, 10.30334993026600208030861775769, 11.12804855227929657346593998576, 11.84122935949544078252744170935