Properties

Label 2-15e2-45.4-c1-0-7
Degree $2$
Conductor $225$
Sign $0.917 + 0.397i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.866 − 1.5i)3-s + (−0.500 + 0.866i)4-s + 1.73i·6-s + (2.59 − 1.5i)7-s − 3i·8-s + (−1.5 − 2.59i)9-s + (1 + 1.73i)11-s + (0.866 + 1.5i)12-s + (1.73 + i)13-s + (−1.5 + 2.59i)14-s + (0.500 + 0.866i)16-s − 4i·17-s + (2.59 + 1.5i)18-s + 8·19-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.499 − 0.866i)3-s + (−0.250 + 0.433i)4-s + 0.707i·6-s + (0.981 − 0.566i)7-s − 1.06i·8-s + (−0.5 − 0.866i)9-s + (0.301 + 0.522i)11-s + (0.249 + 0.433i)12-s + (0.480 + 0.277i)13-s + (−0.400 + 0.694i)14-s + (0.125 + 0.216i)16-s − 0.970i·17-s + (0.612 + 0.353i)18-s + 1.83·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 + 0.397i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.917 + 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.917 + 0.397i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ 0.917 + 0.397i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.04822 - 0.217409i\)
\(L(\frac12)\) \(\approx\) \(1.04822 - 0.217409i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.866 + 1.5i)T \)
5 \( 1 \)
good2 \( 1 + (0.866 - 0.5i)T + (1 - 1.73i)T^{2} \)
7 \( 1 + (-2.59 + 1.5i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-1.73 - i)T + (6.5 + 11.2i)T^{2} \)
17 \( 1 + 4iT - 17T^{2} \)
19 \( 1 - 8T + 19T^{2} \)
23 \( 1 + (2.59 + 1.5i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.5 + 0.866i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 + (2.5 - 4.33i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (6.92 - 4i)T + (21.5 - 37.2i)T^{2} \)
47 \( 1 + (6.06 - 3.5i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + 2iT - 53T^{2} \)
59 \( 1 + (7 - 12.1i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (2.59 + 1.5i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 2T + 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 + (3 + 5.19i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-7.79 + 4.5i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 - 15T + 89T^{2} \)
97 \( 1 + (1.73 - i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07802479609158136582253854710, −11.50227629745020673884248933243, −9.864549335628471389833744011795, −9.062248999002875606993402376261, −7.968780208217688930806018493554, −7.51386289938755394923643911101, −6.53159072992239292963102843242, −4.70770831648353199562520420336, −3.27877565443137169676674328242, −1.29092685980446188214799950289, 1.77190946552616613835539648406, 3.49208418543190910432014017075, 5.01176078281149394015673956521, 5.75790584858429441523721573098, 7.912352711906511156333769662445, 8.578638647989805930346787557363, 9.375817695707002706557743251260, 10.30334993026600208030861775769, 11.12804855227929657346593998576, 11.84122935949544078252744170935

Graph of the $Z$-function along the critical line