L(s) = 1 | + (−0.727 + 0.807i)2-s + (−0.917 + 1.46i)3-s + (0.0855 + 0.813i)4-s + (0.934 + 2.03i)5-s + (−0.519 − 1.80i)6-s + (1.73 + 3.01i)7-s + (−2.47 − 1.80i)8-s + (−1.31 − 2.69i)9-s + (−2.32 − 0.722i)10-s + (2.35 − 2.61i)11-s + (−1.27 − 0.620i)12-s + (1.45 + 1.61i)13-s + (−3.69 − 0.786i)14-s + (−3.84 − 0.490i)15-s + (1.65 − 0.352i)16-s + (−1.54 − 1.12i)17-s + ⋯ |
L(s) = 1 | + (−0.514 + 0.571i)2-s + (−0.529 + 0.848i)3-s + (0.0427 + 0.406i)4-s + (0.417 + 0.908i)5-s + (−0.212 − 0.738i)6-s + (0.657 + 1.13i)7-s + (−0.876 − 0.636i)8-s + (−0.439 − 0.898i)9-s + (−0.733 − 0.228i)10-s + (0.709 − 0.788i)11-s + (−0.367 − 0.179i)12-s + (0.402 + 0.447i)13-s + (−0.988 − 0.210i)14-s + (−0.991 − 0.126i)15-s + (0.414 − 0.0880i)16-s + (−0.375 − 0.272i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(−0.974−0.224i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(−0.974−0.224i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
−0.974−0.224i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), −0.974−0.224i)
|
Particular Values
L(1) |
≈ |
0.0966030+0.851467i |
L(21) |
≈ |
0.0966030+0.851467i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.917−1.46i)T |
| 5 | 1+(−0.934−2.03i)T |
good | 2 | 1+(0.727−0.807i)T+(−0.209−1.98i)T2 |
| 7 | 1+(−1.73−3.01i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−2.35+2.61i)T+(−1.14−10.9i)T2 |
| 13 | 1+(−1.45−1.61i)T+(−1.35+12.9i)T2 |
| 17 | 1+(1.54+1.12i)T+(5.25+16.1i)T2 |
| 19 | 1+(0.970+0.704i)T+(5.87+18.0i)T2 |
| 23 | 1+(1.96+0.417i)T+(21.0+9.35i)T2 |
| 29 | 1+(3.26+1.45i)T+(19.4+21.5i)T2 |
| 31 | 1+(−5.79+2.58i)T+(20.7−23.0i)T2 |
| 37 | 1+(−2.46+7.58i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.73−1.92i)T+(−4.28+40.7i)T2 |
| 43 | 1+(−5.34−9.26i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−11.9−5.34i)T+(31.4+34.9i)T2 |
| 53 | 1+(11.2−8.18i)T+(16.3−50.4i)T2 |
| 59 | 1+(3.64+4.04i)T+(−6.16+58.6i)T2 |
| 61 | 1+(−0.353+0.392i)T+(−6.37−60.6i)T2 |
| 67 | 1+(9.83−4.37i)T+(44.8−49.7i)T2 |
| 71 | 1+(−6.38+4.63i)T+(21.9−67.5i)T2 |
| 73 | 1+(2.75+8.46i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−6.17−2.74i)T+(52.8+58.7i)T2 |
| 83 | 1+(−0.372+3.53i)T+(−81.1−17.2i)T2 |
| 89 | 1+(−2.71−8.36i)T+(−72.0+52.3i)T2 |
| 97 | 1+(15.6+6.98i)T+(64.9+72.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.36238202482677845519397460675, −11.46902159999408117311117898626, −10.93684691554729500810331688312, −9.392272836234706401852527372940, −9.029548192692308482652555016022, −7.80577669542527337066025113444, −6.31866046348892520088068436004, −5.93015416532149255749269629357, −4.17823627169106997356117649982, −2.78559570253842474530398484169,
0.971763339454350420492917129443, 1.90477935073733786095969733901, 4.43695632030613276534851291474, 5.59264648539826489941502259288, 6.68382813077524476658892387748, 7.932468704386456032129577694301, 8.890703104325643878203167592887, 10.09971252149568245644673899674, 10.78596986566261388129312930720, 11.76865463406391166206515741429