Properties

Label 2-15e2-225.31-c1-0-5
Degree $2$
Conductor $225$
Sign $-0.974 - 0.224i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.727 + 0.807i)2-s + (−0.917 + 1.46i)3-s + (0.0855 + 0.813i)4-s + (0.934 + 2.03i)5-s + (−0.519 − 1.80i)6-s + (1.73 + 3.01i)7-s + (−2.47 − 1.80i)8-s + (−1.31 − 2.69i)9-s + (−2.32 − 0.722i)10-s + (2.35 − 2.61i)11-s + (−1.27 − 0.620i)12-s + (1.45 + 1.61i)13-s + (−3.69 − 0.786i)14-s + (−3.84 − 0.490i)15-s + (1.65 − 0.352i)16-s + (−1.54 − 1.12i)17-s + ⋯
L(s)  = 1  + (−0.514 + 0.571i)2-s + (−0.529 + 0.848i)3-s + (0.0427 + 0.406i)4-s + (0.417 + 0.908i)5-s + (−0.212 − 0.738i)6-s + (0.657 + 1.13i)7-s + (−0.876 − 0.636i)8-s + (−0.439 − 0.898i)9-s + (−0.733 − 0.228i)10-s + (0.709 − 0.788i)11-s + (−0.367 − 0.179i)12-s + (0.402 + 0.447i)13-s + (−0.988 − 0.210i)14-s + (−0.991 − 0.126i)15-s + (0.414 − 0.0880i)16-s + (−0.375 − 0.272i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.974 - 0.224i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ -0.974 - 0.224i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0966030 + 0.851467i\)
\(L(\frac12)\) \(\approx\) \(0.0966030 + 0.851467i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.917 - 1.46i)T \)
5 \( 1 + (-0.934 - 2.03i)T \)
good2 \( 1 + (0.727 - 0.807i)T + (-0.209 - 1.98i)T^{2} \)
7 \( 1 + (-1.73 - 3.01i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-2.35 + 2.61i)T + (-1.14 - 10.9i)T^{2} \)
13 \( 1 + (-1.45 - 1.61i)T + (-1.35 + 12.9i)T^{2} \)
17 \( 1 + (1.54 + 1.12i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (0.970 + 0.704i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (1.96 + 0.417i)T + (21.0 + 9.35i)T^{2} \)
29 \( 1 + (3.26 + 1.45i)T + (19.4 + 21.5i)T^{2} \)
31 \( 1 + (-5.79 + 2.58i)T + (20.7 - 23.0i)T^{2} \)
37 \( 1 + (-2.46 + 7.58i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-1.73 - 1.92i)T + (-4.28 + 40.7i)T^{2} \)
43 \( 1 + (-5.34 - 9.26i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-11.9 - 5.34i)T + (31.4 + 34.9i)T^{2} \)
53 \( 1 + (11.2 - 8.18i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (3.64 + 4.04i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (-0.353 + 0.392i)T + (-6.37 - 60.6i)T^{2} \)
67 \( 1 + (9.83 - 4.37i)T + (44.8 - 49.7i)T^{2} \)
71 \( 1 + (-6.38 + 4.63i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (2.75 + 8.46i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (-6.17 - 2.74i)T + (52.8 + 58.7i)T^{2} \)
83 \( 1 + (-0.372 + 3.53i)T + (-81.1 - 17.2i)T^{2} \)
89 \( 1 + (-2.71 - 8.36i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (15.6 + 6.98i)T + (64.9 + 72.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.36238202482677845519397460675, −11.46902159999408117311117898626, −10.93684691554729500810331688312, −9.392272836234706401852527372940, −9.029548192692308482652555016022, −7.80577669542527337066025113444, −6.31866046348892520088068436004, −5.93015416532149255749269629357, −4.17823627169106997356117649982, −2.78559570253842474530398484169, 0.971763339454350420492917129443, 1.90477935073733786095969733901, 4.43695632030613276534851291474, 5.59264648539826489941502259288, 6.68382813077524476658892387748, 7.932468704386456032129577694301, 8.890703104325643878203167592887, 10.09971252149568245644673899674, 10.78596986566261388129312930720, 11.76865463406391166206515741429

Graph of the $Z$-function along the critical line