L(s) = 1 | + (0.797 − 0.885i)2-s + (−1.56 + 0.733i)3-s + (0.0604 + 0.575i)4-s + (1.30 − 1.81i)5-s + (−0.602 + 1.97i)6-s + (0.157 + 0.272i)7-s + (2.48 + 1.80i)8-s + (1.92 − 2.30i)9-s + (−0.566 − 2.60i)10-s + (1.93 − 2.14i)11-s + (−0.516 − 0.858i)12-s + (4.36 + 4.85i)13-s + (0.367 + 0.0781i)14-s + (−0.719 + 3.80i)15-s + (2.45 − 0.521i)16-s + (0.794 + 0.577i)17-s + ⋯ |
L(s) = 1 | + (0.564 − 0.626i)2-s + (−0.906 + 0.423i)3-s + (0.0302 + 0.287i)4-s + (0.584 − 0.811i)5-s + (−0.245 + 0.806i)6-s + (0.0595 + 0.103i)7-s + (0.879 + 0.638i)8-s + (0.641 − 0.766i)9-s + (−0.179 − 0.823i)10-s + (0.583 − 0.647i)11-s + (−0.149 − 0.247i)12-s + (1.21 + 1.34i)13-s + (0.0982 + 0.0208i)14-s + (−0.185 + 0.982i)15-s + (0.613 − 0.130i)16-s + (0.192 + 0.139i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.940+0.338i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.940+0.338i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.940+0.338i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.940+0.338i)
|
Particular Values
L(1) |
≈ |
1.45054−0.253220i |
L(21) |
≈ |
1.45054−0.253220i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.56−0.733i)T |
| 5 | 1+(−1.30+1.81i)T |
good | 2 | 1+(−0.797+0.885i)T+(−0.209−1.98i)T2 |
| 7 | 1+(−0.157−0.272i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1.93+2.14i)T+(−1.14−10.9i)T2 |
| 13 | 1+(−4.36−4.85i)T+(−1.35+12.9i)T2 |
| 17 | 1+(−0.794−0.577i)T+(5.25+16.1i)T2 |
| 19 | 1+(5.88+4.27i)T+(5.87+18.0i)T2 |
| 23 | 1+(−1.28−0.272i)T+(21.0+9.35i)T2 |
| 29 | 1+(3.94+1.75i)T+(19.4+21.5i)T2 |
| 31 | 1+(7.91−3.52i)T+(20.7−23.0i)T2 |
| 37 | 1+(−0.00738+0.0227i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−3.06−3.40i)T+(−4.28+40.7i)T2 |
| 43 | 1+(1.34+2.33i)T+(−21.5+37.2i)T2 |
| 47 | 1+(4.76+2.12i)T+(31.4+34.9i)T2 |
| 53 | 1+(3.44−2.50i)T+(16.3−50.4i)T2 |
| 59 | 1+(−3.46−3.84i)T+(−6.16+58.6i)T2 |
| 61 | 1+(4.95−5.50i)T+(−6.37−60.6i)T2 |
| 67 | 1+(2.27−1.01i)T+(44.8−49.7i)T2 |
| 71 | 1+(−9.63+7.00i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.283+0.872i)T+(−59.0+42.9i)T2 |
| 79 | 1+(10.3+4.62i)T+(52.8+58.7i)T2 |
| 83 | 1+(−1.03+9.88i)T+(−81.1−17.2i)T2 |
| 89 | 1+(−3.78−11.6i)T+(−72.0+52.3i)T2 |
| 97 | 1+(6.75+3.00i)T+(64.9+72.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10662568912641666239290045990, −11.30746778569059809339962997235, −10.73669845571165229512577886658, −9.239921532746259974039793312548, −8.616595112729179873715562725994, −6.78500717750421154326544100337, −5.76640892117427536103499700401, −4.58484336433911971142553325720, −3.77790065659370990435504570904, −1.67777899600964975604989546505,
1.65064791605194197304253738365, 3.93607526901711181379964232576, 5.44630874779649818838713589039, 6.07046247639122664383866718575, 6.86075133844797830731214218668, 7.85462267391715482288484715704, 9.679735711954971087205908912211, 10.66475165602129073135317847377, 11.04747751980182670943521411836, 12.68805904856569402679844836819