L(s) = 1 | + (−1.73 − 1.73i)2-s + 3.99i·4-s + (1.22 − 1.22i)7-s + (3.46 − 3.46i)8-s − 4.24i·11-s + (−3.67 − 3.67i)13-s − 4.24·14-s − 3.99·16-s + (1.73 + 1.73i)17-s − 5i·19-s + (−7.34 + 7.34i)22-s + (−1.73 + 1.73i)23-s + 12.7i·26-s + (4.89 + 4.89i)28-s − 4.24·29-s + ⋯ |
L(s) = 1 | + (−1.22 − 1.22i)2-s + 1.99i·4-s + (0.462 − 0.462i)7-s + (1.22 − 1.22i)8-s − 1.27i·11-s + (−1.01 − 1.01i)13-s − 1.13·14-s − 0.999·16-s + (0.420 + 0.420i)17-s − 1.14i·19-s + (−1.56 + 1.56i)22-s + (−0.361 + 0.361i)23-s + 2.49i·26-s + (0.925 + 0.925i)28-s − 0.787·29-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(−0.876+0.481i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(−0.876+0.481i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
−0.876+0.481i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), −0.876+0.481i)
|
Particular Values
L(1) |
≈ |
0.142229−0.554215i |
L(21) |
≈ |
0.142229−0.554215i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(1.73+1.73i)T+2iT2 |
| 7 | 1+(−1.22+1.22i)T−7iT2 |
| 11 | 1+4.24iT−11T2 |
| 13 | 1+(3.67+3.67i)T+13iT2 |
| 17 | 1+(−1.73−1.73i)T+17iT2 |
| 19 | 1+5iT−19T2 |
| 23 | 1+(1.73−1.73i)T−23iT2 |
| 29 | 1+4.24T+29T2 |
| 31 | 1−T+31T2 |
| 37 | 1+(−2.44+2.44i)T−37iT2 |
| 41 | 1+8.48iT−41T2 |
| 43 | 1+(1.22+1.22i)T+43iT2 |
| 47 | 1+(−5.19−5.19i)T+47iT2 |
| 53 | 1+(−6.92+6.92i)T−53iT2 |
| 59 | 1−12.7T+59T2 |
| 61 | 1+7T+61T2 |
| 67 | 1+(−3.67+3.67i)T−67iT2 |
| 71 | 1−8.48iT−71T2 |
| 73 | 1+(−2.44−2.44i)T+73iT2 |
| 79 | 1−2iT−79T2 |
| 83 | 1+(1.73−1.73i)T−83iT2 |
| 89 | 1+8.48T+89T2 |
| 97 | 1+(8.57−8.57i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47590850967784301914375074342, −10.82830197752965162340494667071, −10.06358246872476802783446505034, −9.046415633833492609780552262527, −8.137131401640558919117113142037, −7.34616539281897897653365323572, −5.48793683036491656874411270155, −3.73322246618618312885169621328, −2.51179118645682904468238432214, −0.71881077159523051674139860729,
1.91646681515026274660386773448, 4.59764290092272401539857748534, 5.73695267404867297466864619600, 6.94932558777755585588789359843, 7.62843142538659275611409059202, 8.609706231969304663220920502309, 9.663364362850317436610656346382, 10.08642708235202175042730428718, 11.62457466386676957517898233086, 12.46124525936878305766155436051