L(s) = 1 | + (1.73 − 1.73i)2-s − 3.99i·4-s + (1.22 + 1.22i)7-s + (−3.46 − 3.46i)8-s − 4.24i·11-s + (−3.67 + 3.67i)13-s + 4.24·14-s − 3.99·16-s + (−1.73 + 1.73i)17-s + 5i·19-s + (−7.34 − 7.34i)22-s + (1.73 + 1.73i)23-s + 12.7i·26-s + (4.89 − 4.89i)28-s + 4.24·29-s + ⋯ |
L(s) = 1 | + (1.22 − 1.22i)2-s − 1.99i·4-s + (0.462 + 0.462i)7-s + (−1.22 − 1.22i)8-s − 1.27i·11-s + (−1.01 + 1.01i)13-s + 1.13·14-s − 0.999·16-s + (−0.420 + 0.420i)17-s + 1.14i·19-s + (−1.56 − 1.56i)22-s + (0.361 + 0.361i)23-s + 2.49i·26-s + (0.925 − 0.925i)28-s + 0.787·29-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(−0.161+0.986i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(−0.161+0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
−0.161+0.986i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), −0.161+0.986i)
|
Particular Values
L(1) |
≈ |
1.42254−1.67489i |
L(21) |
≈ |
1.42254−1.67489i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−1.73+1.73i)T−2iT2 |
| 7 | 1+(−1.22−1.22i)T+7iT2 |
| 11 | 1+4.24iT−11T2 |
| 13 | 1+(3.67−3.67i)T−13iT2 |
| 17 | 1+(1.73−1.73i)T−17iT2 |
| 19 | 1−5iT−19T2 |
| 23 | 1+(−1.73−1.73i)T+23iT2 |
| 29 | 1−4.24T+29T2 |
| 31 | 1−T+31T2 |
| 37 | 1+(−2.44−2.44i)T+37iT2 |
| 41 | 1+8.48iT−41T2 |
| 43 | 1+(1.22−1.22i)T−43iT2 |
| 47 | 1+(5.19−5.19i)T−47iT2 |
| 53 | 1+(6.92+6.92i)T+53iT2 |
| 59 | 1+12.7T+59T2 |
| 61 | 1+7T+61T2 |
| 67 | 1+(−3.67−3.67i)T+67iT2 |
| 71 | 1−8.48iT−71T2 |
| 73 | 1+(−2.44+2.44i)T−73iT2 |
| 79 | 1+2iT−79T2 |
| 83 | 1+(−1.73−1.73i)T+83iT2 |
| 89 | 1−8.48T+89T2 |
| 97 | 1+(8.57+8.57i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.94759769507453077428932928475, −11.35006249867237928513604936421, −10.45506297873959919173887657904, −9.368068875813559934955589780812, −8.145481342643812868966019063657, −6.40061017556961704003843862937, −5.36868942085162070229423723846, −4.34702313679672812887203264441, −3.11484971180110186144680182269, −1.79318744664388340199161078881,
2.85391935217092437432548227444, 4.63472054137443077423453915682, 4.88639721950486722783021450170, 6.43632609983115554070979723455, 7.31977083729115718513766763869, 7.963455720396301469773036376915, 9.459379223035889961518583690411, 10.70833690122989171497862312399, 12.03836381489548060961156198571, 12.76326097835072108155974907559