Properties

Label 2-15e2-1.1-c5-0-1
Degree $2$
Conductor $225$
Sign $1$
Analytic cond. $36.0863$
Root an. cond. $6.00719$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.26·2-s − 4.31·4-s − 131.·7-s + 191.·8-s − 290.·11-s − 68.3·13-s + 689.·14-s − 867.·16-s − 310.·17-s − 2.13e3·19-s + 1.52e3·22-s + 873.·23-s + 359.·26-s + 564.·28-s + 2.58e3·29-s − 9.08e3·31-s − 1.54e3·32-s + 1.63e3·34-s − 3.99e3·37-s + 1.12e4·38-s − 1.69e4·41-s + 1.80e4·43-s + 1.25e3·44-s − 4.59e3·46-s + 2.48e4·47-s + 366.·49-s + 294.·52-s + ⋯
L(s)  = 1  − 0.930·2-s − 0.134·4-s − 1.01·7-s + 1.05·8-s − 0.722·11-s − 0.112·13-s + 0.940·14-s − 0.847·16-s − 0.260·17-s − 1.35·19-s + 0.672·22-s + 0.344·23-s + 0.104·26-s + 0.136·28-s + 0.569·29-s − 1.69·31-s − 0.267·32-s + 0.242·34-s − 0.479·37-s + 1.26·38-s − 1.57·41-s + 1.48·43-s + 0.0973·44-s − 0.320·46-s + 1.64·47-s + 0.0218·49-s + 0.0151·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(36.0863\)
Root analytic conductor: \(6.00719\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4911601550\)
\(L(\frac12)\) \(\approx\) \(0.4911601550\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 5.26T + 32T^{2} \)
7 \( 1 + 131.T + 1.68e4T^{2} \)
11 \( 1 + 290.T + 1.61e5T^{2} \)
13 \( 1 + 68.3T + 3.71e5T^{2} \)
17 \( 1 + 310.T + 1.41e6T^{2} \)
19 \( 1 + 2.13e3T + 2.47e6T^{2} \)
23 \( 1 - 873.T + 6.43e6T^{2} \)
29 \( 1 - 2.58e3T + 2.05e7T^{2} \)
31 \( 1 + 9.08e3T + 2.86e7T^{2} \)
37 \( 1 + 3.99e3T + 6.93e7T^{2} \)
41 \( 1 + 1.69e4T + 1.15e8T^{2} \)
43 \( 1 - 1.80e4T + 1.47e8T^{2} \)
47 \( 1 - 2.48e4T + 2.29e8T^{2} \)
53 \( 1 + 7.65e3T + 4.18e8T^{2} \)
59 \( 1 - 9.23e3T + 7.14e8T^{2} \)
61 \( 1 - 3.32e3T + 8.44e8T^{2} \)
67 \( 1 - 3.23e4T + 1.35e9T^{2} \)
71 \( 1 - 3.58e4T + 1.80e9T^{2} \)
73 \( 1 - 2.65e4T + 2.07e9T^{2} \)
79 \( 1 - 7.17e4T + 3.07e9T^{2} \)
83 \( 1 - 3.96e4T + 3.93e9T^{2} \)
89 \( 1 - 1.17e5T + 5.58e9T^{2} \)
97 \( 1 + 2.18e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90880775493321453296346416087, −10.32922925742657441238937397695, −9.338195420571021429742679796303, −8.622535718665849500450433477217, −7.53550758969185555618980251413, −6.51992904178314121938969783543, −5.11640618532413895898539994873, −3.77650973962669880183824624873, −2.19946919416405276868563605344, −0.46631085599505725640030348152, 0.46631085599505725640030348152, 2.19946919416405276868563605344, 3.77650973962669880183824624873, 5.11640618532413895898539994873, 6.51992904178314121938969783543, 7.53550758969185555618980251413, 8.622535718665849500450433477217, 9.338195420571021429742679796303, 10.32922925742657441238937397695, 10.90880775493321453296346416087

Graph of the $Z$-function along the critical line