L(s) = 1 | + 3-s + 9-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (−1.5 − 0.866i)31-s + (0.5 + 0.866i)33-s + 37-s + (0.5 + 0.866i)47-s + (0.5 − 0.866i)49-s − 1.73i·53-s + (−0.5 + 0.866i)59-s + (−0.5 + 0.866i)69-s − 71-s + ⋯ |
L(s) = 1 | + 3-s + 9-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s + 27-s + (−1.5 − 0.866i)31-s + (0.5 + 0.866i)33-s + 37-s + (0.5 + 0.866i)47-s + (0.5 − 0.866i)49-s − 1.73i·53-s + (−0.5 + 0.866i)59-s + (−0.5 + 0.866i)69-s − 71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.605104168\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.605104168\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + 1.73iT - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - 1.73iT - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.594911039207034380735889395916, −8.928278308650131740756195877906, −7.974605110637929069470931560570, −7.42883980202713283721052709631, −6.58663632256802057483562325581, −5.52893864536373114378324646795, −4.32012713862446569056126639139, −3.78139968569781875441758450907, −2.53872046684487447374174716494, −1.64718827139036342634569102306,
1.44406315573415977471035187523, 2.65237737974868495483185104364, 3.57993385667201976004482263457, 4.32189125892702422368976306557, 5.53252426697632345920761677076, 6.44950415523688628297209988765, 7.36977966218864435314461518079, 8.034836568769722430490701989476, 8.966519709655018988873380451885, 9.249165799761302718392500285879