Properties

Label 2-1584-1.1-c3-0-47
Degree $2$
Conductor $1584$
Sign $-1$
Analytic cond. $93.4590$
Root an. cond. $9.66742$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.1·5-s + 23.1·7-s − 11·11-s − 59.6·13-s + 80.8·17-s + 11.7·19-s − 56.0·23-s + 168.·25-s + 85.4·29-s + 99.8·31-s − 396.·35-s + 402.·37-s − 27.0·41-s + 74·43-s − 408.·47-s + 192.·49-s − 463.·53-s + 188.·55-s − 498.·59-s − 635.·61-s + 1.02e3·65-s + 701.·67-s + 27.7·71-s + 619.·73-s − 254.·77-s + 208.·79-s − 1.30e3·83-s + ⋯
L(s)  = 1  − 1.53·5-s + 1.24·7-s − 0.301·11-s − 1.27·13-s + 1.15·17-s + 0.141·19-s − 0.508·23-s + 1.34·25-s + 0.547·29-s + 0.578·31-s − 1.91·35-s + 1.79·37-s − 0.103·41-s + 0.262·43-s − 1.26·47-s + 0.560·49-s − 1.20·53-s + 0.462·55-s − 1.10·59-s − 1.33·61-s + 1.95·65-s + 1.27·67-s + 0.0463·71-s + 0.993·73-s − 0.376·77-s + 0.296·79-s − 1.72·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(93.4590\)
Root analytic conductor: \(9.66742\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1584,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + 11T \)
good5 \( 1 + 17.1T + 125T^{2} \)
7 \( 1 - 23.1T + 343T^{2} \)
13 \( 1 + 59.6T + 2.19e3T^{2} \)
17 \( 1 - 80.8T + 4.91e3T^{2} \)
19 \( 1 - 11.7T + 6.85e3T^{2} \)
23 \( 1 + 56.0T + 1.21e4T^{2} \)
29 \( 1 - 85.4T + 2.43e4T^{2} \)
31 \( 1 - 99.8T + 2.97e4T^{2} \)
37 \( 1 - 402.T + 5.06e4T^{2} \)
41 \( 1 + 27.0T + 6.89e4T^{2} \)
43 \( 1 - 74T + 7.95e4T^{2} \)
47 \( 1 + 408.T + 1.03e5T^{2} \)
53 \( 1 + 463.T + 1.48e5T^{2} \)
59 \( 1 + 498.T + 2.05e5T^{2} \)
61 \( 1 + 635.T + 2.26e5T^{2} \)
67 \( 1 - 701.T + 3.00e5T^{2} \)
71 \( 1 - 27.7T + 3.57e5T^{2} \)
73 \( 1 - 619.T + 3.89e5T^{2} \)
79 \( 1 - 208.T + 4.93e5T^{2} \)
83 \( 1 + 1.30e3T + 5.71e5T^{2} \)
89 \( 1 - 1.39e3T + 7.04e5T^{2} \)
97 \( 1 - 1.05e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.278595329809874528341132007612, −7.78244830374909943685011737400, −7.53580027999244594433788440635, −6.26277538124417949784904758899, −4.94827193607931544864424037013, −4.65395880685323897777534853217, −3.57516889948019528588592057699, −2.55890113389633905797180988300, −1.17760953987608182624534403609, 0, 1.17760953987608182624534403609, 2.55890113389633905797180988300, 3.57516889948019528588592057699, 4.65395880685323897777534853217, 4.94827193607931544864424037013, 6.26277538124417949784904758899, 7.53580027999244594433788440635, 7.78244830374909943685011737400, 8.278595329809874528341132007612

Graph of the $Z$-function along the critical line