Properties

Label 2-158-79.19-c1-0-1
Degree $2$
Conductor $158$
Sign $0.975 - 0.221i$
Analytic cond. $1.26163$
Root an. cond. $1.12322$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.428 + 0.903i)2-s + (−0.575 − 1.98i)3-s + (−0.632 − 0.774i)4-s + (0.764 + 3.74i)5-s + (2.04 + 0.331i)6-s + (1.67 − 1.74i)7-s + (0.970 − 0.239i)8-s + (−1.07 + 0.682i)9-s + (−3.71 − 0.915i)10-s + (4.09 − 1.36i)11-s + (−1.17 + 1.70i)12-s + (3.80 − 0.619i)13-s + (0.856 + 2.25i)14-s + (7.00 − 3.67i)15-s + (−0.200 + 0.979i)16-s + (−0.870 + 2.29i)17-s + ⋯
L(s)  = 1  + (−0.303 + 0.638i)2-s + (−0.332 − 1.14i)3-s + (−0.316 − 0.387i)4-s + (0.342 + 1.67i)5-s + (0.833 + 0.135i)6-s + (0.632 − 0.658i)7-s + (0.343 − 0.0846i)8-s + (−0.359 + 0.227i)9-s + (−1.17 − 0.289i)10-s + (1.23 − 0.412i)11-s + (−0.339 + 0.491i)12-s + (1.05 − 0.171i)13-s + (0.228 + 0.603i)14-s + (1.80 − 0.948i)15-s + (−0.0500 + 0.244i)16-s + (−0.211 + 0.556i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 158 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 - 0.221i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 158 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 - 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(158\)    =    \(2 \cdot 79\)
Sign: $0.975 - 0.221i$
Analytic conductor: \(1.26163\)
Root analytic conductor: \(1.12322\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{158} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 158,\ (\ :1/2),\ 0.975 - 0.221i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.999582 + 0.112226i\)
\(L(\frac12)\) \(\approx\) \(0.999582 + 0.112226i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.428 - 0.903i)T \)
79 \( 1 + (-8.18 - 3.46i)T \)
good3 \( 1 + (0.575 + 1.98i)T + (-2.53 + 1.60i)T^{2} \)
5 \( 1 + (-0.764 - 3.74i)T + (-4.59 + 1.95i)T^{2} \)
7 \( 1 + (-1.67 + 1.74i)T + (-0.281 - 6.99i)T^{2} \)
11 \( 1 + (-4.09 + 1.36i)T + (8.79 - 6.60i)T^{2} \)
13 \( 1 + (-3.80 + 0.619i)T + (12.3 - 4.11i)T^{2} \)
17 \( 1 + (0.870 - 2.29i)T + (-12.7 - 11.2i)T^{2} \)
19 \( 1 + (5.09 + 2.16i)T + (13.1 + 13.7i)T^{2} \)
23 \( 1 + (3.64 - 6.32i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-0.0655 + 1.62i)T + (-28.9 - 2.33i)T^{2} \)
31 \( 1 + (-6.76 + 0.546i)T + (30.5 - 4.97i)T^{2} \)
37 \( 1 + (5.46 - 4.10i)T + (10.2 - 35.5i)T^{2} \)
41 \( 1 + (-3.56 + 3.15i)T + (4.94 - 40.7i)T^{2} \)
43 \( 1 + (3.14 + 1.05i)T + (34.3 + 25.8i)T^{2} \)
47 \( 1 + (5.22 + 3.92i)T + (13.0 + 45.1i)T^{2} \)
53 \( 1 + (-2.39 + 8.25i)T + (-44.7 - 28.3i)T^{2} \)
59 \( 1 + (4.38 - 5.37i)T + (-11.8 - 57.8i)T^{2} \)
61 \( 1 + (1.41 + 11.6i)T + (-59.2 + 14.5i)T^{2} \)
67 \( 1 + (6.21 - 8.99i)T + (-23.7 - 62.6i)T^{2} \)
71 \( 1 + (1.66 - 0.409i)T + (62.8 - 32.9i)T^{2} \)
73 \( 1 + (7.71 + 1.25i)T + (69.2 + 23.1i)T^{2} \)
83 \( 1 + (4.24 + 5.19i)T + (-16.6 + 81.3i)T^{2} \)
89 \( 1 + (0.557 + 0.137i)T + (78.8 + 41.3i)T^{2} \)
97 \( 1 + (1.01 + 8.32i)T + (-94.1 + 23.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40739345108896113994388553455, −11.71939550061113103151245488943, −11.01121324981574856363760507969, −10.05701108174536435905316735074, −8.470811062221604155640073614753, −7.42297931003128294319975495432, −6.51023698509504972191024330084, −6.15424305959445492307277917294, −3.82900118904437600697729809934, −1.63857903604333517125033397016, 1.63941658890129057860198841598, 4.20245394286564345645793552149, 4.70214048540529175055775857173, 6.05398259435642419158453359921, 8.426423032909745072325714084899, 8.899346804806432102437301470928, 9.755120436312674806674086722484, 10.82407665078333646297121800215, 11.90272541617636532244373332478, 12.49805326148318002090675663893

Graph of the $Z$-function along the critical line