Properties

Label 2-158-79.10-c1-0-5
Degree $2$
Conductor $158$
Sign $0.987 - 0.156i$
Analytic cond. $1.26163$
Root an. cond. $1.12322$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.354 + 0.935i)2-s + (1.62 − 0.853i)3-s + (−0.748 + 0.663i)4-s + (−0.272 − 2.24i)5-s + (1.37 + 1.21i)6-s + (2.00 − 1.05i)7-s + (−0.885 − 0.464i)8-s + (0.213 − 0.308i)9-s + (2.00 − 1.05i)10-s + (−0.379 + 3.12i)11-s + (−0.651 + 1.71i)12-s + (−0.973 + 0.862i)13-s + (1.69 + 1.50i)14-s + (−2.35 − 3.41i)15-s + (0.120 − 0.992i)16-s + (−3.61 + 3.20i)17-s + ⋯
L(s)  = 1  + (0.250 + 0.661i)2-s + (0.939 − 0.492i)3-s + (−0.374 + 0.331i)4-s + (−0.121 − 1.00i)5-s + (0.561 + 0.497i)6-s + (0.759 − 0.398i)7-s + (−0.313 − 0.164i)8-s + (0.0710 − 0.102i)9-s + (0.632 − 0.332i)10-s + (−0.114 + 0.942i)11-s + (−0.188 + 0.495i)12-s + (−0.269 + 0.239i)13-s + (0.453 + 0.402i)14-s + (−0.609 − 0.882i)15-s + (0.0301 − 0.248i)16-s + (−0.877 + 0.777i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 158 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.156i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 158 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.156i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(158\)    =    \(2 \cdot 79\)
Sign: $0.987 - 0.156i$
Analytic conductor: \(1.26163\)
Root analytic conductor: \(1.12322\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{158} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 158,\ (\ :1/2),\ 0.987 - 0.156i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.57056 + 0.124033i\)
\(L(\frac12)\) \(\approx\) \(1.57056 + 0.124033i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.354 - 0.935i)T \)
79 \( 1 + (-8.88 - 0.183i)T \)
good3 \( 1 + (-1.62 + 0.853i)T + (1.70 - 2.46i)T^{2} \)
5 \( 1 + (0.272 + 2.24i)T + (-4.85 + 1.19i)T^{2} \)
7 \( 1 + (-2.00 + 1.05i)T + (3.97 - 5.76i)T^{2} \)
11 \( 1 + (0.379 - 3.12i)T + (-10.6 - 2.63i)T^{2} \)
13 \( 1 + (0.973 - 0.862i)T + (1.56 - 12.9i)T^{2} \)
17 \( 1 + (3.61 - 3.20i)T + (2.04 - 16.8i)T^{2} \)
19 \( 1 + (2.20 + 0.544i)T + (16.8 + 8.82i)T^{2} \)
23 \( 1 - 0.445T + 23T^{2} \)
29 \( 1 + (0.847 + 1.22i)T + (-10.2 + 27.1i)T^{2} \)
31 \( 1 + (0.812 + 2.14i)T + (-23.2 + 20.5i)T^{2} \)
37 \( 1 + (-6.67 - 1.64i)T + (32.7 + 17.1i)T^{2} \)
41 \( 1 + (0.936 + 7.70i)T + (-39.8 + 9.81i)T^{2} \)
43 \( 1 + (1.02 + 8.44i)T + (-41.7 + 10.2i)T^{2} \)
47 \( 1 + (12.7 - 3.14i)T + (41.6 - 21.8i)T^{2} \)
53 \( 1 + (-6.32 - 3.31i)T + (30.1 + 43.6i)T^{2} \)
59 \( 1 + (9.91 + 8.78i)T + (7.11 + 58.5i)T^{2} \)
61 \( 1 + (-5.57 - 1.37i)T + (54.0 + 28.3i)T^{2} \)
67 \( 1 + (-2.38 + 6.29i)T + (-50.1 - 44.4i)T^{2} \)
71 \( 1 + (-11.4 - 5.98i)T + (40.3 + 58.4i)T^{2} \)
73 \( 1 + (-6.53 - 5.78i)T + (8.79 + 72.4i)T^{2} \)
83 \( 1 + (-0.329 + 0.291i)T + (10.0 - 82.3i)T^{2} \)
89 \( 1 + (15.2 - 7.98i)T + (50.5 - 73.2i)T^{2} \)
97 \( 1 + (-11.6 - 2.88i)T + (85.8 + 45.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05370535617488540371633324811, −12.44535745913479209916726934571, −11.02343528969302351208382974849, −9.455444086182741153517872072478, −8.475101779863978701463215517233, −7.88744382074282021384480151272, −6.80977499845791919249425376796, −5.08125228065014286127327600037, −4.16279407962407723956045868605, −2.01617843353926054112932070991, 2.51284730249004065897902097677, 3.39554497405635312563302666895, 4.83019506682982583785611010978, 6.40100098827492005781103046980, 8.001677684885729707253696536738, 8.880749246102027744945771600118, 9.913975211008272471964896787821, 11.06569844436408624520865655131, 11.53975982650859485606639181255, 13.04181000720760667560526676939

Graph of the $Z$-function along the critical line