L(s) = 1 | − 3.53·2-s + 4.46·4-s + 7·7-s + 12.4·8-s + 2.93·11-s + 19.0·13-s − 24.7·14-s − 79.7·16-s + 122.·17-s + 107.·19-s − 10.3·22-s + 210.·23-s − 67.3·26-s + 31.2·28-s − 95.4·29-s − 94.3·31-s + 181.·32-s − 432.·34-s − 97.1·37-s − 379.·38-s + 491.·41-s + 43.0·43-s + 13.1·44-s − 743.·46-s + 473.·47-s + 49·49-s + 85.1·52-s + ⋯ |
L(s) = 1 | − 1.24·2-s + 0.558·4-s + 0.377·7-s + 0.551·8-s + 0.0805·11-s + 0.406·13-s − 0.471·14-s − 1.24·16-s + 1.74·17-s + 1.29·19-s − 0.100·22-s + 1.90·23-s − 0.507·26-s + 0.211·28-s − 0.611·29-s − 0.546·31-s + 1.00·32-s − 2.18·34-s − 0.431·37-s − 1.61·38-s + 1.87·41-s + 0.152·43-s + 0.0449·44-s − 2.38·46-s + 1.46·47-s + 0.142·49-s + 0.227·52-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1575s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.437857769 |
L(21) |
≈ |
1.437857769 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1−7T |
good | 2 | 1+3.53T+8T2 |
| 11 | 1−2.93T+1.33e3T2 |
| 13 | 1−19.0T+2.19e3T2 |
| 17 | 1−122.T+4.91e3T2 |
| 19 | 1−107.T+6.85e3T2 |
| 23 | 1−210.T+1.21e4T2 |
| 29 | 1+95.4T+2.43e4T2 |
| 31 | 1+94.3T+2.97e4T2 |
| 37 | 1+97.1T+5.06e4T2 |
| 41 | 1−491.T+6.89e4T2 |
| 43 | 1−43.0T+7.95e4T2 |
| 47 | 1−473.T+1.03e5T2 |
| 53 | 1+183.T+1.48e5T2 |
| 59 | 1−760.T+2.05e5T2 |
| 61 | 1+198.T+2.26e5T2 |
| 67 | 1−309.T+3.00e5T2 |
| 71 | 1+665.T+3.57e5T2 |
| 73 | 1+621.T+3.89e5T2 |
| 79 | 1+24.7T+4.93e5T2 |
| 83 | 1+406.T+5.71e5T2 |
| 89 | 1+261.T+7.04e5T2 |
| 97 | 1−1.00e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.153353705586358740942453497971, −8.368641941146238382480236027923, −7.43914919027476010469579570411, −7.24818549978646837826075463789, −5.76931935054066266328814399972, −5.08914932039572729156213172901, −3.88725987228588153584368358120, −2.81147344313458567046704702605, −1.37364563684643671998184723910, −0.825756224556272554430617877710,
0.825756224556272554430617877710, 1.37364563684643671998184723910, 2.81147344313458567046704702605, 3.88725987228588153584368358120, 5.08914932039572729156213172901, 5.76931935054066266328814399972, 7.24818549978646837826075463789, 7.43914919027476010469579570411, 8.368641941146238382480236027923, 9.153353705586358740942453497971