Properties

Label 2-1575-1.1-c3-0-46
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 4-s − 7·7-s + 21·8-s + 60·11-s − 38·13-s + 21·14-s − 71·16-s + 84·17-s + 110·19-s − 180·22-s − 120·23-s + 114·26-s − 7·28-s + 162·29-s + 236·31-s + 45·32-s − 252·34-s + 376·37-s − 330·38-s − 126·41-s + 34·43-s + 60·44-s + 360·46-s + 6·47-s + 49·49-s − 38·52-s + ⋯
L(s)  = 1  − 1.06·2-s + 1/8·4-s − 0.377·7-s + 0.928·8-s + 1.64·11-s − 0.810·13-s + 0.400·14-s − 1.10·16-s + 1.19·17-s + 1.32·19-s − 1.74·22-s − 1.08·23-s + 0.859·26-s − 0.0472·28-s + 1.03·29-s + 1.36·31-s + 0.248·32-s − 1.27·34-s + 1.67·37-s − 1.40·38-s − 0.479·41-s + 0.120·43-s + 0.205·44-s + 1.15·46-s + 0.0186·47-s + 1/7·49-s − 0.101·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.259458145\)
\(L(\frac12)\) \(\approx\) \(1.259458145\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 + 3 T + p^{3} T^{2} \)
11 \( 1 - 60 T + p^{3} T^{2} \)
13 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 - 84 T + p^{3} T^{2} \)
19 \( 1 - 110 T + p^{3} T^{2} \)
23 \( 1 + 120 T + p^{3} T^{2} \)
29 \( 1 - 162 T + p^{3} T^{2} \)
31 \( 1 - 236 T + p^{3} T^{2} \)
37 \( 1 - 376 T + p^{3} T^{2} \)
41 \( 1 + 126 T + p^{3} T^{2} \)
43 \( 1 - 34 T + p^{3} T^{2} \)
47 \( 1 - 6 T + p^{3} T^{2} \)
53 \( 1 + 582 T + p^{3} T^{2} \)
59 \( 1 - 492 T + p^{3} T^{2} \)
61 \( 1 + 880 T + p^{3} T^{2} \)
67 \( 1 - 826 T + p^{3} T^{2} \)
71 \( 1 + 666 T + p^{3} T^{2} \)
73 \( 1 - 826 T + p^{3} T^{2} \)
79 \( 1 + 592 T + p^{3} T^{2} \)
83 \( 1 + 792 T + p^{3} T^{2} \)
89 \( 1 - 1002 T + p^{3} T^{2} \)
97 \( 1 + 1442 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.275199666107111971597503930626, −8.262671905598554008194260425412, −7.69937519011113004098244554931, −6.83276582215055888044447485549, −6.02270053679299264650567972482, −4.84044872568776255138190729034, −3.99165220698615545959163756334, −2.88500847997515113332739930679, −1.45194209929227002936861618932, −0.71674928355056388130186062589, 0.71674928355056388130186062589, 1.45194209929227002936861618932, 2.88500847997515113332739930679, 3.99165220698615545959163756334, 4.84044872568776255138190729034, 6.02270053679299264650567972482, 6.83276582215055888044447485549, 7.69937519011113004098244554931, 8.262671905598554008194260425412, 9.275199666107111971597503930626

Graph of the $Z$-function along the critical line