Properties

Label 2-1575-1.1-c3-0-139
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s + 17·4-s − 7·7-s + 45·8-s − 12·11-s − 30·13-s − 35·14-s + 89·16-s − 134·17-s − 92·19-s − 60·22-s + 112·23-s − 150·26-s − 119·28-s + 58·29-s − 224·31-s + 85·32-s − 670·34-s + 146·37-s − 460·38-s − 18·41-s − 340·43-s − 204·44-s + 560·46-s + 208·47-s + 49·49-s − 510·52-s + ⋯
L(s)  = 1  + 1.76·2-s + 17/8·4-s − 0.377·7-s + 1.98·8-s − 0.328·11-s − 0.640·13-s − 0.668·14-s + 1.39·16-s − 1.91·17-s − 1.11·19-s − 0.581·22-s + 1.01·23-s − 1.13·26-s − 0.803·28-s + 0.371·29-s − 1.29·31-s + 0.469·32-s − 3.37·34-s + 0.648·37-s − 1.96·38-s − 0.0685·41-s − 1.20·43-s − 0.698·44-s + 1.79·46-s + 0.645·47-s + 1/7·49-s − 1.36·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 - 5 T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 + 30 T + p^{3} T^{2} \)
17 \( 1 + 134 T + p^{3} T^{2} \)
19 \( 1 + 92 T + p^{3} T^{2} \)
23 \( 1 - 112 T + p^{3} T^{2} \)
29 \( 1 - 2 p T + p^{3} T^{2} \)
31 \( 1 + 224 T + p^{3} T^{2} \)
37 \( 1 - 146 T + p^{3} T^{2} \)
41 \( 1 + 18 T + p^{3} T^{2} \)
43 \( 1 + 340 T + p^{3} T^{2} \)
47 \( 1 - 208 T + p^{3} T^{2} \)
53 \( 1 + 754 T + p^{3} T^{2} \)
59 \( 1 + 380 T + p^{3} T^{2} \)
61 \( 1 - 718 T + p^{3} T^{2} \)
67 \( 1 + 412 T + p^{3} T^{2} \)
71 \( 1 - 960 T + p^{3} T^{2} \)
73 \( 1 + 1066 T + p^{3} T^{2} \)
79 \( 1 - 896 T + p^{3} T^{2} \)
83 \( 1 - 436 T + p^{3} T^{2} \)
89 \( 1 - 1038 T + p^{3} T^{2} \)
97 \( 1 - 702 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.630922165644295098716854860057, −7.44690819838335379183793504096, −6.68391687414205998156653311125, −6.20174460147457692092310364651, −5.07154146795750940103689489110, −4.58773506801867108176623064663, −3.67196439188189314431589556933, −2.68828652888043393862619792301, −1.97790511512788001758041752325, 0, 1.97790511512788001758041752325, 2.68828652888043393862619792301, 3.67196439188189314431589556933, 4.58773506801867108176623064663, 5.07154146795750940103689489110, 6.20174460147457692092310364651, 6.68391687414205998156653311125, 7.44690819838335379183793504096, 8.630922165644295098716854860057

Graph of the $Z$-function along the critical line