L(s) = 1 | + 4.84·2-s + 15.4·4-s − 7·7-s + 36.0·8-s − 62.1·11-s − 14.0·13-s − 33.8·14-s + 50.9·16-s + 63.5·17-s + 48.7·19-s − 301.·22-s − 99.3·23-s − 68.2·26-s − 108.·28-s + 69.0·29-s − 9.68·31-s − 41.7·32-s + 307.·34-s − 240.·37-s + 235.·38-s − 335.·41-s − 51.2·43-s − 960.·44-s − 481.·46-s − 451.·47-s + 49·49-s − 217.·52-s + ⋯ |
L(s) = 1 | + 1.71·2-s + 1.93·4-s − 0.377·7-s + 1.59·8-s − 1.70·11-s − 0.300·13-s − 0.646·14-s + 0.795·16-s + 0.906·17-s + 0.588·19-s − 2.91·22-s − 0.900·23-s − 0.514·26-s − 0.729·28-s + 0.442·29-s − 0.0561·31-s − 0.230·32-s + 1.55·34-s − 1.06·37-s + 1.00·38-s − 1.27·41-s − 0.181·43-s − 3.29·44-s − 1.54·46-s − 1.40·47-s + 0.142·49-s − 0.580·52-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−4.84T+8T2 |
| 11 | 1+62.1T+1.33e3T2 |
| 13 | 1+14.0T+2.19e3T2 |
| 17 | 1−63.5T+4.91e3T2 |
| 19 | 1−48.7T+6.85e3T2 |
| 23 | 1+99.3T+1.21e4T2 |
| 29 | 1−69.0T+2.43e4T2 |
| 31 | 1+9.68T+2.97e4T2 |
| 37 | 1+240.T+5.06e4T2 |
| 41 | 1+335.T+6.89e4T2 |
| 43 | 1+51.2T+7.95e4T2 |
| 47 | 1+451.T+1.03e5T2 |
| 53 | 1+180.T+1.48e5T2 |
| 59 | 1+268.T+2.05e5T2 |
| 61 | 1+323.T+2.26e5T2 |
| 67 | 1−541.T+3.00e5T2 |
| 71 | 1−161.T+3.57e5T2 |
| 73 | 1+305.T+3.89e5T2 |
| 79 | 1+504.T+4.93e5T2 |
| 83 | 1+513.T+5.71e5T2 |
| 89 | 1+543.T+7.04e5T2 |
| 97 | 1+1.86e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.384331824567338309409869433142, −7.60758832949921062586527399256, −6.83522105699567632849114607417, −5.87399555005394543990128888500, −5.27513364180265903058296641855, −4.63451614880122821168500082308, −3.42287669883448047211874415962, −2.93597061187632528117779620375, −1.85440271616855420699768383103, 0,
1.85440271616855420699768383103, 2.93597061187632528117779620375, 3.42287669883448047211874415962, 4.63451614880122821168500082308, 5.27513364180265903058296641855, 5.87399555005394543990128888500, 6.83522105699567632849114607417, 7.60758832949921062586527399256, 8.384331824567338309409869433142