L(s) = 1 | + 4.53·2-s + 12.5·4-s − 7·7-s + 20.7·8-s + 54.0·11-s − 75.2·13-s − 31.7·14-s − 6.60·16-s − 71.2·17-s − 65.5·19-s + 245.·22-s + 125.·23-s − 341.·26-s − 87.9·28-s − 190.·29-s − 193.·31-s − 195.·32-s − 323.·34-s − 114.·37-s − 297.·38-s − 216.·41-s + 413.·43-s + 679.·44-s + 570.·46-s − 113.·47-s + 49·49-s − 945.·52-s + ⋯ |
L(s) = 1 | + 1.60·2-s + 1.57·4-s − 0.377·7-s + 0.915·8-s + 1.48·11-s − 1.60·13-s − 0.606·14-s − 0.103·16-s − 1.01·17-s − 0.791·19-s + 2.37·22-s + 1.13·23-s − 2.57·26-s − 0.593·28-s − 1.21·29-s − 1.11·31-s − 1.08·32-s − 1.62·34-s − 0.509·37-s − 1.26·38-s − 0.826·41-s + 1.46·43-s + 2.32·44-s + 1.82·46-s − 0.352·47-s + 0.142·49-s − 2.52·52-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−4.53T+8T2 |
| 11 | 1−54.0T+1.33e3T2 |
| 13 | 1+75.2T+2.19e3T2 |
| 17 | 1+71.2T+4.91e3T2 |
| 19 | 1+65.5T+6.85e3T2 |
| 23 | 1−125.T+1.21e4T2 |
| 29 | 1+190.T+2.43e4T2 |
| 31 | 1+193.T+2.97e4T2 |
| 37 | 1+114.T+5.06e4T2 |
| 41 | 1+216.T+6.89e4T2 |
| 43 | 1−413.T+7.95e4T2 |
| 47 | 1+113.T+1.03e5T2 |
| 53 | 1−584.T+1.48e5T2 |
| 59 | 1+203.T+2.05e5T2 |
| 61 | 1+162.T+2.26e5T2 |
| 67 | 1+477.T+3.00e5T2 |
| 71 | 1+822.T+3.57e5T2 |
| 73 | 1−798.T+3.89e5T2 |
| 79 | 1+468.T+4.93e5T2 |
| 83 | 1+310.T+5.71e5T2 |
| 89 | 1+1.31e3T+7.04e5T2 |
| 97 | 1−1.31e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.941664626530402052209743965201, −7.27608393770094668537368206929, −6.92500044824474366830360661971, −6.08445837208276198508666334141, −5.21781657259045096229567898352, −4.39137653105078944536123181915, −3.77033592552118968377450768158, −2.73288405632729858763018071585, −1.83034871472492507952397496032, 0,
1.83034871472492507952397496032, 2.73288405632729858763018071585, 3.77033592552118968377450768158, 4.39137653105078944536123181915, 5.21781657259045096229567898352, 6.08445837208276198508666334141, 6.92500044824474366830360661971, 7.27608393770094668537368206929, 8.941664626530402052209743965201