L(s) = 1 | + 4.42·2-s + 11.5·4-s − 7·7-s + 15.7·8-s + 23.3·11-s − 3.56·13-s − 30.9·14-s − 22.7·16-s − 57.5·17-s − 51.1·19-s + 103.·22-s − 65.6·23-s − 15.7·26-s − 80.9·28-s − 41.6·29-s − 167.·31-s − 226.·32-s − 254.·34-s + 224.·37-s − 226.·38-s − 196.·41-s − 58.9·43-s + 270.·44-s − 290.·46-s − 41.9·47-s + 49·49-s − 41.2·52-s + ⋯ |
L(s) = 1 | + 1.56·2-s + 1.44·4-s − 0.377·7-s + 0.697·8-s + 0.640·11-s − 0.0761·13-s − 0.591·14-s − 0.354·16-s − 0.820·17-s − 0.617·19-s + 1.00·22-s − 0.595·23-s − 0.119·26-s − 0.546·28-s − 0.266·29-s − 0.970·31-s − 1.25·32-s − 1.28·34-s + 0.997·37-s − 0.965·38-s − 0.749·41-s − 0.209·43-s + 0.926·44-s − 0.930·46-s − 0.130·47-s + 0.142·49-s − 0.110·52-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−4.42T+8T2 |
| 11 | 1−23.3T+1.33e3T2 |
| 13 | 1+3.56T+2.19e3T2 |
| 17 | 1+57.5T+4.91e3T2 |
| 19 | 1+51.1T+6.85e3T2 |
| 23 | 1+65.6T+1.21e4T2 |
| 29 | 1+41.6T+2.43e4T2 |
| 31 | 1+167.T+2.97e4T2 |
| 37 | 1−224.T+5.06e4T2 |
| 41 | 1+196.T+6.89e4T2 |
| 43 | 1+58.9T+7.95e4T2 |
| 47 | 1+41.9T+1.03e5T2 |
| 53 | 1−33.3T+1.48e5T2 |
| 59 | 1−229.T+2.05e5T2 |
| 61 | 1+700.T+2.26e5T2 |
| 67 | 1−453.T+3.00e5T2 |
| 71 | 1+930.T+3.57e5T2 |
| 73 | 1+370.T+3.89e5T2 |
| 79 | 1+54.6T+4.93e5T2 |
| 83 | 1−430.T+5.71e5T2 |
| 89 | 1−737.T+7.04e5T2 |
| 97 | 1+150.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.735356245539814843809548937832, −7.55973658675769768918584504454, −6.63696174865574883611972844360, −6.17110395030828208201658990292, −5.26852909626236097040674487360, −4.33825213797983399165174840191, −3.77225699248095646594731869118, −2.76650522359898395153222623748, −1.78746356226343367574356846662, 0,
1.78746356226343367574356846662, 2.76650522359898395153222623748, 3.77225699248095646594731869118, 4.33825213797983399165174840191, 5.26852909626236097040674487360, 6.17110395030828208201658990292, 6.63696174865574883611972844360, 7.55973658675769768918584504454, 8.735356245539814843809548937832