L(s) = 1 | + 0.504·2-s − 7.74·4-s + 7·7-s − 7.94·8-s − 54.8·11-s + 16.0·13-s + 3.53·14-s + 57.9·16-s + 0.422·17-s + 127.·19-s − 27.7·22-s − 51.1·23-s + 8.08·26-s − 54.2·28-s − 41.4·29-s + 192.·31-s + 92.8·32-s + 0.213·34-s − 189.·37-s + 64.3·38-s + 76.3·41-s + 294.·43-s + 425.·44-s − 25.7·46-s − 540.·47-s + 49·49-s − 123.·52-s + ⋯ |
L(s) = 1 | + 0.178·2-s − 0.968·4-s + 0.377·7-s − 0.351·8-s − 1.50·11-s + 0.341·13-s + 0.0674·14-s + 0.905·16-s + 0.00602·17-s + 1.53·19-s − 0.268·22-s − 0.463·23-s + 0.0609·26-s − 0.365·28-s − 0.265·29-s + 1.11·31-s + 0.512·32-s + 0.00107·34-s − 0.840·37-s + 0.274·38-s + 0.290·41-s + 1.04·43-s + 1.45·44-s − 0.0826·46-s − 1.67·47-s + 0.142·49-s − 0.330·52-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1−7T |
good | 2 | 1−0.504T+8T2 |
| 11 | 1+54.8T+1.33e3T2 |
| 13 | 1−16.0T+2.19e3T2 |
| 17 | 1−0.422T+4.91e3T2 |
| 19 | 1−127.T+6.85e3T2 |
| 23 | 1+51.1T+1.21e4T2 |
| 29 | 1+41.4T+2.43e4T2 |
| 31 | 1−192.T+2.97e4T2 |
| 37 | 1+189.T+5.06e4T2 |
| 41 | 1−76.3T+6.89e4T2 |
| 43 | 1−294.T+7.95e4T2 |
| 47 | 1+540.T+1.03e5T2 |
| 53 | 1−661.T+1.48e5T2 |
| 59 | 1+410.T+2.05e5T2 |
| 61 | 1−46.0T+2.26e5T2 |
| 67 | 1−10.4T+3.00e5T2 |
| 71 | 1−491.T+3.57e5T2 |
| 73 | 1+814.T+3.89e5T2 |
| 79 | 1+858.T+4.93e5T2 |
| 83 | 1−1.05e3T+5.71e5T2 |
| 89 | 1+341.T+7.04e5T2 |
| 97 | 1+1.41e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.538877691483014295633354723248, −7.995127227814632421923625035794, −7.25305955713484787817781560238, −5.90348465202619142901548779861, −5.28679625616914132438790769323, −4.60361337773776209181337607797, −3.55528783844966165002727701114, −2.63785556257609362022225206533, −1.16458108812078835901304952419, 0,
1.16458108812078835901304952419, 2.63785556257609362022225206533, 3.55528783844966165002727701114, 4.60361337773776209181337607797, 5.28679625616914132438790769323, 5.90348465202619142901548779861, 7.25305955713484787817781560238, 7.995127227814632421923625035794, 8.538877691483014295633354723248