L(s) = 1 | − 0.618·2-s − 1.61·4-s − 7-s + 2.23·8-s + 0.236·11-s − 1.23·13-s + 0.618·14-s + 1.85·16-s + 2.47·17-s − 4.47·19-s − 0.145·22-s + 6.23·23-s + 0.763·26-s + 1.61·28-s − 5·29-s + 3.70·31-s − 5.61·32-s − 1.52·34-s − 3·37-s + 2.76·38-s − 4.76·41-s − 1.76·43-s − 0.381·44-s − 3.85·46-s − 2·47-s + 49-s + 2.00·52-s + ⋯ |
L(s) = 1 | − 0.437·2-s − 0.809·4-s − 0.377·7-s + 0.790·8-s + 0.0711·11-s − 0.342·13-s + 0.165·14-s + 0.463·16-s + 0.599·17-s − 1.02·19-s − 0.0311·22-s + 1.30·23-s + 0.149·26-s + 0.305·28-s − 0.928·29-s + 0.666·31-s − 0.993·32-s − 0.262·34-s − 0.493·37-s + 0.448·38-s − 0.744·41-s − 0.268·43-s − 0.0575·44-s − 0.568·46-s − 0.291·47-s + 0.142·49-s + 0.277·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 2 | \( 1 + 0.618T + 2T^{2} \) |
| 11 | \( 1 - 0.236T + 11T^{2} \) |
| 13 | \( 1 + 1.23T + 13T^{2} \) |
| 17 | \( 1 - 2.47T + 17T^{2} \) |
| 19 | \( 1 + 4.47T + 19T^{2} \) |
| 23 | \( 1 - 6.23T + 23T^{2} \) |
| 29 | \( 1 + 5T + 29T^{2} \) |
| 31 | \( 1 - 3.70T + 31T^{2} \) |
| 37 | \( 1 + 3T + 37T^{2} \) |
| 41 | \( 1 + 4.76T + 41T^{2} \) |
| 43 | \( 1 + 1.76T + 43T^{2} \) |
| 47 | \( 1 + 2T + 47T^{2} \) |
| 53 | \( 1 - 8.47T + 53T^{2} \) |
| 59 | \( 1 + 11.7T + 59T^{2} \) |
| 61 | \( 1 + 9.70T + 61T^{2} \) |
| 67 | \( 1 - 4.23T + 67T^{2} \) |
| 71 | \( 1 + 8.70T + 71T^{2} \) |
| 73 | \( 1 - 8.76T + 73T^{2} \) |
| 79 | \( 1 + 11.1T + 79T^{2} \) |
| 83 | \( 1 + 7.70T + 83T^{2} \) |
| 89 | \( 1 + 17.2T + 89T^{2} \) |
| 97 | \( 1 + 5.23T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.015818767480641590494540269519, −8.414233578723368141617527311173, −7.53148923264926700975358271651, −6.75009883347375055028335954907, −5.66712829094775006233928476008, −4.84122488701842089366980507762, −3.96703907466446787406158731692, −2.93410291197492932117551952451, −1.44631677378036851450710791691, 0,
1.44631677378036851450710791691, 2.93410291197492932117551952451, 3.96703907466446787406158731692, 4.84122488701842089366980507762, 5.66712829094775006233928476008, 6.75009883347375055028335954907, 7.53148923264926700975358271651, 8.414233578723368141617527311173, 9.015818767480641590494540269519