L(s) = 1 | + i·3-s + (−1.75 − 1.38i)5-s − 9-s + 1.50·11-s + i·13-s + (1.38 − 1.75i)15-s + 2.72i·17-s − 0.726·19-s − 4.72i·23-s + (1.14 + 4.86i)25-s − i·27-s + 7.55·29-s − 3.00·31-s + 1.50i·33-s + 5.00i·37-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.783 − 0.621i)5-s − 0.333·9-s + 0.453·11-s + 0.277i·13-s + (0.358 − 0.452i)15-s + 0.661i·17-s − 0.166·19-s − 0.985i·23-s + (0.228 + 0.973i)25-s − 0.192i·27-s + 1.40·29-s − 0.540·31-s + 0.261i·33-s + 0.823i·37-s + ⋯ |
Λ(s)=(=(1560s/2ΓC(s)L(s)(0.621−0.783i)Λ(2−s)
Λ(s)=(=(1560s/2ΓC(s+1/2)L(s)(0.621−0.783i)Λ(1−s)
Degree: |
2 |
Conductor: |
1560
= 23⋅3⋅5⋅13
|
Sign: |
0.621−0.783i
|
Analytic conductor: |
12.4566 |
Root analytic conductor: |
3.52939 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1560(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1560, ( :1/2), 0.621−0.783i)
|
Particular Values
L(1) |
≈ |
1.341494545 |
L(21) |
≈ |
1.341494545 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1+(1.75+1.38i)T |
| 13 | 1−iT |
good | 7 | 1−7T2 |
| 11 | 1−1.50T+11T2 |
| 17 | 1−2.72iT−17T2 |
| 19 | 1+0.726T+19T2 |
| 23 | 1+4.72iT−23T2 |
| 29 | 1−7.55T+29T2 |
| 31 | 1+3.00T+31T2 |
| 37 | 1−5.00iT−37T2 |
| 41 | 1−5.78T+41T2 |
| 43 | 1−2.72iT−43T2 |
| 47 | 1−10.2iT−47T2 |
| 53 | 1+7.55iT−53T2 |
| 59 | 1−12.5T+59T2 |
| 61 | 1−6.28T+61T2 |
| 67 | 1−12.5iT−67T2 |
| 71 | 1−4.77T+71T2 |
| 73 | 1−12.0iT−73T2 |
| 79 | 1+5.27T+79T2 |
| 83 | 1−7.78iT−83T2 |
| 89 | 1+1.78T+89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.529483734734021801915179388985, −8.555382327827838305792906697918, −8.330674430023863386139069887098, −7.15077712551556995085925016431, −6.30550584023024407782859623276, −5.26696690886148509486899115733, −4.36223527195295732273681589980, −3.87403364941065329325446591857, −2.62788764105150553599212179629, −1.02576401867867564325747385002,
0.67100685482534905698289186302, 2.22509669275629148811609855287, 3.25242509453202029788493913655, 4.10730708062395728568942631491, 5.26525440344810809138777868042, 6.23384760064478230719889467819, 7.08525839282254982372441470937, 7.54117328949581074182351928452, 8.436693432652361115141152991773, 9.192065201062430856056753813061