Properties

Label 2-1560-5.4-c1-0-3
Degree $2$
Conductor $1560$
Sign $-0.981 + 0.193i$
Analytic cond. $12.4566$
Root an. cond. $3.52939$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + (0.432 + 2.19i)5-s − 9-s − 2.86·11-s + i·13-s + (−2.19 + 0.432i)15-s + 5.52i·17-s − 3.52·19-s − 7.52i·23-s + (−4.62 + 1.89i)25-s i·27-s − 6.77·29-s + 5.72·31-s − 2.86i·33-s − 3.72i·37-s + ⋯
L(s)  = 1  + 0.577i·3-s + (0.193 + 0.981i)5-s − 0.333·9-s − 0.863·11-s + 0.277i·13-s + (−0.566 + 0.111i)15-s + 1.33i·17-s − 0.808·19-s − 1.56i·23-s + (−0.925 + 0.379i)25-s − 0.192i·27-s − 1.25·29-s + 1.02·31-s − 0.498i·33-s − 0.613i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 + 0.193i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.981 + 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1560\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 13\)
Sign: $-0.981 + 0.193i$
Analytic conductor: \(12.4566\)
Root analytic conductor: \(3.52939\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1560} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1560,\ (\ :1/2),\ -0.981 + 0.193i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7038444852\)
\(L(\frac12)\) \(\approx\) \(0.7038444852\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + (-0.432 - 2.19i)T \)
13 \( 1 - iT \)
good7 \( 1 - 7T^{2} \)
11 \( 1 + 2.86T + 11T^{2} \)
17 \( 1 - 5.52iT - 17T^{2} \)
19 \( 1 + 3.52T + 19T^{2} \)
23 \( 1 + 7.52iT - 23T^{2} \)
29 \( 1 + 6.77T + 29T^{2} \)
31 \( 1 - 5.72T + 31T^{2} \)
37 \( 1 + 3.72iT - 37T^{2} \)
41 \( 1 + 10.1T + 41T^{2} \)
43 \( 1 - 5.52iT - 43T^{2} \)
47 \( 1 - 8.65iT - 47T^{2} \)
53 \( 1 - 6.77iT - 53T^{2} \)
59 \( 1 + 0.593T + 59T^{2} \)
61 \( 1 + 5.25T + 61T^{2} \)
67 \( 1 + 10.5iT - 67T^{2} \)
71 \( 1 + 2.38T + 71T^{2} \)
73 \( 1 + 5.45iT - 73T^{2} \)
79 \( 1 + 2.47T + 79T^{2} \)
83 \( 1 + 8.11iT - 83T^{2} \)
89 \( 1 - 14.1T + 89T^{2} \)
97 \( 1 - 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07603361051203060104647849857, −9.105170335525612336289032606322, −8.278135692538432201663442567797, −7.53319639947653276167057760273, −6.41076354955591419663032683115, −5.98888509418124426703172247845, −4.78269923429936598028536343139, −3.94731023187876966275697102425, −2.92970900312235734574531812403, −2.02484172789241170997944818127, 0.25651970391370069379619951743, 1.61383289075840042996961143375, 2.68119735105710948267816707283, 3.91008759763318696290211277627, 5.22313858781190639101729956970, 5.41203491320019935657354033754, 6.67206910552901408641580288668, 7.50358735574620922758862165661, 8.201897937956572162333721948986, 8.923901756996164232770234598811

Graph of the $Z$-function along the critical line