L(s) = 1 | + i·3-s + (0.432 + 2.19i)5-s − 9-s − 2.86·11-s + i·13-s + (−2.19 + 0.432i)15-s + 5.52i·17-s − 3.52·19-s − 7.52i·23-s + (−4.62 + 1.89i)25-s − i·27-s − 6.77·29-s + 5.72·31-s − 2.86i·33-s − 3.72i·37-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.193 + 0.981i)5-s − 0.333·9-s − 0.863·11-s + 0.277i·13-s + (−0.566 + 0.111i)15-s + 1.33i·17-s − 0.808·19-s − 1.56i·23-s + (−0.925 + 0.379i)25-s − 0.192i·27-s − 1.25·29-s + 1.02·31-s − 0.498i·33-s − 0.613i·37-s + ⋯ |
Λ(s)=(=(1560s/2ΓC(s)L(s)(−0.981+0.193i)Λ(2−s)
Λ(s)=(=(1560s/2ΓC(s+1/2)L(s)(−0.981+0.193i)Λ(1−s)
Degree: |
2 |
Conductor: |
1560
= 23⋅3⋅5⋅13
|
Sign: |
−0.981+0.193i
|
Analytic conductor: |
12.4566 |
Root analytic conductor: |
3.52939 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1560(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1560, ( :1/2), −0.981+0.193i)
|
Particular Values
L(1) |
≈ |
0.7038444852 |
L(21) |
≈ |
0.7038444852 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1+(−0.432−2.19i)T |
| 13 | 1−iT |
good | 7 | 1−7T2 |
| 11 | 1+2.86T+11T2 |
| 17 | 1−5.52iT−17T2 |
| 19 | 1+3.52T+19T2 |
| 23 | 1+7.52iT−23T2 |
| 29 | 1+6.77T+29T2 |
| 31 | 1−5.72T+31T2 |
| 37 | 1+3.72iT−37T2 |
| 41 | 1+10.1T+41T2 |
| 43 | 1−5.52iT−43T2 |
| 47 | 1−8.65iT−47T2 |
| 53 | 1−6.77iT−53T2 |
| 59 | 1+0.593T+59T2 |
| 61 | 1+5.25T+61T2 |
| 67 | 1+10.5iT−67T2 |
| 71 | 1+2.38T+71T2 |
| 73 | 1+5.45iT−73T2 |
| 79 | 1+2.47T+79T2 |
| 83 | 1+8.11iT−83T2 |
| 89 | 1−14.1T+89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07603361051203060104647849857, −9.105170335525612336289032606322, −8.278135692538432201663442567797, −7.53319639947653276167057760273, −6.41076354955591419663032683115, −5.98888509418124426703172247845, −4.78269923429936598028536343139, −3.94731023187876966275697102425, −2.92970900312235734574531812403, −2.02484172789241170997944818127,
0.25651970391370069379619951743, 1.61383289075840042996961143375, 2.68119735105710948267816707283, 3.91008759763318696290211277627, 5.22313858781190639101729956970, 5.41203491320019935657354033754, 6.67206910552901408641580288668, 7.50358735574620922758862165661, 8.201897937956572162333721948986, 8.923901756996164232770234598811