L(s) = 1 | − i·3-s + (1.32 + 1.80i)5-s − 9-s − 4.64·11-s − i·13-s + (1.80 − 1.32i)15-s + 4.24i·17-s + 6.24·19-s − 2.24i·23-s + (−1.51 + 4.76i)25-s + i·27-s + 9.21·29-s + 9.28·31-s + 4.64i·33-s + 7.28i·37-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.590 + 0.807i)5-s − 0.333·9-s − 1.39·11-s − 0.277i·13-s + (0.466 − 0.340i)15-s + 1.03i·17-s + 1.43·19-s − 0.469i·23-s + (−0.303 + 0.952i)25-s + 0.192i·27-s + 1.71·29-s + 1.66·31-s + 0.807i·33-s + 1.19i·37-s + ⋯ |
Λ(s)=(=(1560s/2ΓC(s)L(s)(0.807−0.590i)Λ(2−s)
Λ(s)=(=(1560s/2ΓC(s+1/2)L(s)(0.807−0.590i)Λ(1−s)
Degree: |
2 |
Conductor: |
1560
= 23⋅3⋅5⋅13
|
Sign: |
0.807−0.590i
|
Analytic conductor: |
12.4566 |
Root analytic conductor: |
3.52939 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1560(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1560, ( :1/2), 0.807−0.590i)
|
Particular Values
L(1) |
≈ |
1.691165838 |
L(21) |
≈ |
1.691165838 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(−1.32−1.80i)T |
| 13 | 1+iT |
good | 7 | 1−7T2 |
| 11 | 1+4.64T+11T2 |
| 17 | 1−4.24iT−17T2 |
| 19 | 1−6.24T+19T2 |
| 23 | 1+2.24iT−23T2 |
| 29 | 1−9.21T+29T2 |
| 31 | 1−9.28T+31T2 |
| 37 | 1−7.28iT−37T2 |
| 41 | 1+5.67T+41T2 |
| 43 | 1−4.24iT−43T2 |
| 47 | 1−2.88iT−47T2 |
| 53 | 1−9.21iT−53T2 |
| 59 | 1+5.92T+59T2 |
| 61 | 1−0.969T+61T2 |
| 67 | 1+1.93iT−67T2 |
| 71 | 1−5.60T+71T2 |
| 73 | 1−12.5iT−73T2 |
| 79 | 1+12.2T+79T2 |
| 83 | 1−3.67iT−83T2 |
| 89 | 1−9.67T+89T2 |
| 97 | 1+6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.778573235752966630884217695802, −8.441942384824842617661871719080, −7.964163989842803213976498035922, −7.06639634395306032651721100231, −6.30274074092437739551701187249, −5.59357451925045113239189400816, −4.64982929997061365432111977485, −3.05450190799556185236435560736, −2.64252810369303682756033193900, −1.23068546542277125054153530126,
0.73764770233626992639436083242, 2.32965637623613612762920136390, 3.23531791428257812801357020721, 4.63183174145057538038395255810, 5.11171818288867438888292609926, 5.80774251948832226749467556079, 6.97819884587705216246658747807, 7.927900575240723868640596805603, 8.635013415150993266327540199425, 9.480714188220271973593980236037