| L(s) = 1 | + (−0.5 + 0.866i)4-s + (1 − 1.73i)5-s + (0.5 + 0.866i)7-s + (−0.5 − 0.866i)11-s + (−0.499 − 0.866i)16-s + 17-s + 19-s + (0.999 + 1.73i)20-s + (−0.5 + 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s + 1.99·35-s + (0.5 + 0.866i)43-s + 0.999·44-s + (−0.5 − 0.866i)47-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)4-s + (1 − 1.73i)5-s + (0.5 + 0.866i)7-s + (−0.5 − 0.866i)11-s + (−0.499 − 0.866i)16-s + 17-s + 19-s + (0.999 + 1.73i)20-s + (−0.5 + 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s + 1.99·35-s + (0.5 + 0.866i)43-s + 0.999·44-s + (−0.5 − 0.866i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.229429079\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.229429079\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 19 | \( 1 - T \) |
| good | 2 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.473350366130719601899813161456, −8.688641296225293314978865255507, −8.282249022368222087371795885205, −7.57377715365348270152309666477, −5.91562007881711043693400735385, −5.40007072398068789325028412127, −4.85292776070008308252552085477, −3.66804513659111975324488354019, −2.48586216376119661316447639978, −1.19677184367361732318077074642,
1.51032557721313214793448982898, 2.53988542889064469549143382216, 3.68863392047217206878572793539, 4.84111666168071033696443910353, 5.66063028445808983305019119877, 6.41565335976116401627386509961, 7.25223459027173445593860181239, 7.82044468243207811765996315903, 9.267016579407686003073661140496, 9.955146669020100099234226323524