| L(s)  = 1 | + (−0.5 − 0.866i)4-s       + (0.5 + 0.866i)7-s             + (0.5 + 0.866i)13-s       + (−0.499 + 0.866i)16-s       + 19-s             + 25-s       + (0.499 − 0.866i)28-s       + (0.5 − 0.866i)31-s             − 37-s             + (0.5 − 0.866i)43-s                   + (0.499 − 0.866i)52-s                   − 61-s       + 0.999·64-s       + (0.5 + 0.866i)67-s             + (0.5 + 0.866i)73-s    + ⋯ | 
| L(s)  = 1 | + (−0.5 − 0.866i)4-s       + (0.5 + 0.866i)7-s             + (0.5 + 0.866i)13-s       + (−0.499 + 0.866i)16-s       + 19-s             + 25-s       + (0.499 − 0.866i)28-s       + (0.5 − 0.866i)31-s             − 37-s             + (0.5 − 0.866i)43-s                   + (0.499 − 0.866i)52-s                   − 61-s       + 0.999·64-s       + (0.5 + 0.866i)67-s             + (0.5 + 0.866i)73-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(1.080924221\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.080924221\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 3 | \( 1 \) | 
|  | 19 | \( 1 - T \) | 
| good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) | 
|  | 5 | \( 1 - T^{2} \) | 
|  | 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) | 
|  | 11 | \( 1 + (0.5 - 0.866i)T^{2} \) | 
|  | 13 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) | 
|  | 17 | \( 1 + (0.5 - 0.866i)T^{2} \) | 
|  | 23 | \( 1 + (0.5 - 0.866i)T^{2} \) | 
|  | 29 | \( 1 - T^{2} \) | 
|  | 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) | 
|  | 37 | \( 1 + T + T^{2} \) | 
|  | 41 | \( 1 - T^{2} \) | 
|  | 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) | 
|  | 47 | \( 1 - T^{2} \) | 
|  | 53 | \( 1 + (0.5 + 0.866i)T^{2} \) | 
|  | 59 | \( 1 - T^{2} \) | 
|  | 61 | \( 1 + T + T^{2} \) | 
|  | 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) | 
|  | 71 | \( 1 + (0.5 - 0.866i)T^{2} \) | 
|  | 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) | 
|  | 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) | 
|  | 83 | \( 1 + (0.5 - 0.866i)T^{2} \) | 
|  | 89 | \( 1 + (0.5 + 0.866i)T^{2} \) | 
|  | 97 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.498820869443401071869200797126, −8.930049294431894290673833486777, −8.312841096688338056052376035286, −7.14780447582695294703046623662, −6.25167544764299354818661998096, −5.45884459273746572262406937792, −4.82462551101106316752878679549, −3.80936670065825329478914242462, −2.40440856173645691182839201906, −1.30346006937395725879944143999, 
1.12656888326601167268129999208, 2.91169442020472748113310662599, 3.62598008450832854572115211491, 4.61906893374022407338417441227, 5.30639795202839473766471746115, 6.59428820174605517888348280638, 7.45854974343366795451643102798, 8.001306040419517469551993195392, 8.740307741070049091456945951617, 9.561817816199146173121503217129
