| L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (2.23 + 0.0740i)5-s + 0.956i·7-s + (0.707 + 0.707i)8-s + (−1.63 + 1.52i)10-s + (−1.88 − 1.88i)11-s + (−1.95 − 1.95i)13-s + (−0.676 − 0.676i)14-s − 1.00·16-s + (−0.844 − 4.03i)17-s + 1.26·19-s + (0.0740 − 2.23i)20-s + 2.66·22-s − 6.61i·23-s + ⋯ |
| L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.999 + 0.0330i)5-s + 0.361i·7-s + (0.250 + 0.250i)8-s + (−0.516 + 0.483i)10-s + (−0.567 − 0.567i)11-s + (−0.541 − 0.541i)13-s + (−0.180 − 0.180i)14-s − 0.250·16-s + (−0.204 − 0.978i)17-s + 0.290·19-s + (0.0165 − 0.499i)20-s + 0.567·22-s − 1.37i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.210632174\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.210632174\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.23 - 0.0740i)T \) |
| 17 | \( 1 + (0.844 + 4.03i)T \) |
| good | 7 | \( 1 - 0.956iT - 7T^{2} \) |
| 11 | \( 1 + (1.88 + 1.88i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.95 + 1.95i)T + 13iT^{2} \) |
| 19 | \( 1 - 1.26T + 19T^{2} \) |
| 23 | \( 1 + 6.61iT - 23T^{2} \) |
| 29 | \( 1 + (2.53 + 2.53i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.95 + 2.95i)T + 31iT^{2} \) |
| 37 | \( 1 - 7.53T + 37T^{2} \) |
| 41 | \( 1 + (-1.63 - 1.63i)T + 41iT^{2} \) |
| 43 | \( 1 + (1.45 - 1.45i)T - 43iT^{2} \) |
| 47 | \( 1 + (4.83 + 4.83i)T + 47iT^{2} \) |
| 53 | \( 1 + (7.57 + 7.57i)T + 53iT^{2} \) |
| 59 | \( 1 - 2.87iT - 59T^{2} \) |
| 61 | \( 1 + (5.15 - 5.15i)T - 61iT^{2} \) |
| 67 | \( 1 + (-2.85 + 2.85i)T - 67iT^{2} \) |
| 71 | \( 1 + (-2.91 + 2.91i)T - 71iT^{2} \) |
| 73 | \( 1 - 4.43iT - 73T^{2} \) |
| 79 | \( 1 + (-5.16 - 5.16i)T + 79iT^{2} \) |
| 83 | \( 1 + (2.66 + 2.66i)T + 83iT^{2} \) |
| 89 | \( 1 - 2.91T + 89T^{2} \) |
| 97 | \( 1 - 14.9T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.425660973667727514490214045174, −8.558172688160068130160400129297, −7.81903785306339471035260943906, −6.92059056615197966419343736990, −6.06243112242596488086244060807, −5.43327818010875426132436283056, −4.64454350042499428597497997568, −2.94467316032228661640586955716, −2.18007877121387231807931352457, −0.55960834019496467117104469884,
1.42693736164628703566957946424, 2.23126642382742291346444612646, 3.37705386599773684510112040514, 4.51990160789925086849029574326, 5.42172842041624542330369068420, 6.39871678869235886469270106815, 7.32238312878368226231651192844, 7.957272735845199976100084197623, 9.192349149769184610371460488778, 9.454473056831607561820032100650