| L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−1.64 + 1.51i)5-s + (0.552 + 0.552i)7-s + (−0.707 − 0.707i)8-s + (−0.0917 + 2.23i)10-s − 6.31i·11-s + (−2.87 + 2.87i)13-s + 0.781·14-s − 1.00·16-s + (0.707 − 0.707i)17-s + 0.819i·19-s + (1.51 + 1.64i)20-s + (−4.46 − 4.46i)22-s + (−1.74 − 1.74i)23-s + ⋯ |
| L(s) = 1 | + (0.499 − 0.499i)2-s − 0.500i·4-s + (−0.735 + 0.677i)5-s + (0.208 + 0.208i)7-s + (−0.250 − 0.250i)8-s + (−0.0290 + 0.706i)10-s − 1.90i·11-s + (−0.798 + 0.798i)13-s + 0.208·14-s − 0.250·16-s + (0.171 − 0.171i)17-s + 0.188i·19-s + (0.338 + 0.367i)20-s + (−0.952 − 0.952i)22-s + (−0.363 − 0.363i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.941 + 0.335i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.941 + 0.335i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8771613181\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8771613181\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.64 - 1.51i)T \) |
| 17 | \( 1 + (-0.707 + 0.707i)T \) |
| good | 7 | \( 1 + (-0.552 - 0.552i)T + 7iT^{2} \) |
| 11 | \( 1 + 6.31iT - 11T^{2} \) |
| 13 | \( 1 + (2.87 - 2.87i)T - 13iT^{2} \) |
| 19 | \( 1 - 0.819iT - 19T^{2} \) |
| 23 | \( 1 + (1.74 + 1.74i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.59T + 29T^{2} \) |
| 31 | \( 1 + 8.39T + 31T^{2} \) |
| 37 | \( 1 + (5.24 + 5.24i)T + 37iT^{2} \) |
| 41 | \( 1 + 9.72iT - 41T^{2} \) |
| 43 | \( 1 + (6.34 - 6.34i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.839 - 0.839i)T - 47iT^{2} \) |
| 53 | \( 1 + (2.65 + 2.65i)T + 53iT^{2} \) |
| 59 | \( 1 + 9.73T + 59T^{2} \) |
| 61 | \( 1 - 12.1T + 61T^{2} \) |
| 67 | \( 1 + (11.2 + 11.2i)T + 67iT^{2} \) |
| 71 | \( 1 + 10.9iT - 71T^{2} \) |
| 73 | \( 1 + (2.69 - 2.69i)T - 73iT^{2} \) |
| 79 | \( 1 - 16.7iT - 79T^{2} \) |
| 83 | \( 1 + (6.72 + 6.72i)T + 83iT^{2} \) |
| 89 | \( 1 - 7.62T + 89T^{2} \) |
| 97 | \( 1 + (-3.34 - 3.34i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.052789955310651880518445358071, −8.393184426583082242736146580182, −7.44078496969582571233208999073, −6.58418637411372968494655456706, −5.76047322263797609382476960053, −4.82664930229642305287687487093, −3.74434934102556829756785265909, −3.16076773240056433522548188801, −2.03500215929573735398783765666, −0.27905802641448652591275450001,
1.66263423329599025255632445902, 3.06835639333093332641294405317, 4.21018666077908859198161322386, 4.79795084331044795686474944330, 5.44930694845389735716212738056, 6.77855881202795887290561194647, 7.46106261252600476160021657973, 7.927343506621112239952745406440, 8.877325153267403620024109376288, 9.788725150360485093107238441474