| L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (1.73 − 1.41i)5-s + (2 + 2i)7-s + (−0.707 − 0.707i)8-s + (0.224 − 2.22i)10-s + 2.82i·11-s + (2.44 − 2.44i)13-s + 2.82·14-s − 1.00·16-s + (−0.707 + 0.707i)17-s − 2.89i·19-s + (−1.41 − 1.73i)20-s + (2.00 + 2.00i)22-s + (1.73 + 1.73i)23-s + ⋯ |
| L(s) = 1 | + (0.499 − 0.499i)2-s − 0.500i·4-s + (0.774 − 0.632i)5-s + (0.755 + 0.755i)7-s + (−0.250 − 0.250i)8-s + (0.0710 − 0.703i)10-s + 0.852i·11-s + (0.679 − 0.679i)13-s + 0.755·14-s − 0.250·16-s + (−0.171 + 0.171i)17-s − 0.665i·19-s + (−0.316 − 0.387i)20-s + (0.426 + 0.426i)22-s + (0.361 + 0.361i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.583 + 0.812i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.583 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.892399695\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.892399695\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.73 + 1.41i)T \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
| good | 7 | \( 1 + (-2 - 2i)T + 7iT^{2} \) |
| 11 | \( 1 - 2.82iT - 11T^{2} \) |
| 13 | \( 1 + (-2.44 + 2.44i)T - 13iT^{2} \) |
| 19 | \( 1 + 2.89iT - 19T^{2} \) |
| 23 | \( 1 + (-1.73 - 1.73i)T + 23iT^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 - 7.34T + 31T^{2} \) |
| 37 | \( 1 + (-1.55 - 1.55i)T + 37iT^{2} \) |
| 41 | \( 1 - 6.29iT - 41T^{2} \) |
| 43 | \( 1 + (1.44 - 1.44i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.82 - 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + (8.34 + 8.34i)T + 53iT^{2} \) |
| 59 | \( 1 - 2.04T + 59T^{2} \) |
| 61 | \( 1 + 9.34T + 61T^{2} \) |
| 67 | \( 1 + (-3.44 - 3.44i)T + 67iT^{2} \) |
| 71 | \( 1 + 6.29iT - 71T^{2} \) |
| 73 | \( 1 + (-11.3 + 11.3i)T - 73iT^{2} \) |
| 79 | \( 1 - 1.55iT - 79T^{2} \) |
| 83 | \( 1 + (2.82 + 2.82i)T + 83iT^{2} \) |
| 89 | \( 1 + 15.2T + 89T^{2} \) |
| 97 | \( 1 + (-1.55 - 1.55i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.480361858951193424860632035740, −8.599698508963876091233486282698, −7.984239136695254089415994316618, −6.61223490373653273187863115697, −5.90984267296464130100418315498, −4.92879295794269866849558254528, −4.63385601847985769383925744080, −3.11022429142000175832357161434, −2.13488034560837082974657630005, −1.20258499319356148049853172919,
1.33586730975155387510868920182, 2.66571058696332018826549493696, 3.71927394697255156115618276343, 4.59068636858717157436421228425, 5.58593858535370184383912068126, 6.36089942660554351528732712412, 6.94694430702389835382186832809, 7.931031245788995589641825100712, 8.601853319662922273918707371045, 9.538838337353288767373003588359