| L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−2.12 − 0.707i)5-s + (−1 − i)7-s + (0.707 + 0.707i)8-s + (2 − 0.999i)10-s + 5.65i·11-s + 1.41·14-s − 1.00·16-s + (0.707 − 0.707i)17-s − 4i·19-s + (−0.707 + 2.12i)20-s + (−4.00 − 4.00i)22-s + (3.99 + 3i)25-s + (−1.00 + 1.00i)28-s + 1.41·29-s + ⋯ |
| L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.948 − 0.316i)5-s + (−0.377 − 0.377i)7-s + (0.250 + 0.250i)8-s + (0.632 − 0.316i)10-s + 1.70i·11-s + 0.377·14-s − 0.250·16-s + (0.171 − 0.171i)17-s − 0.917i·19-s + (−0.158 + 0.474i)20-s + (−0.852 − 0.852i)22-s + (0.799 + 0.600i)25-s + (−0.188 + 0.188i)28-s + 0.262·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7313584850\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7313584850\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.12 + 0.707i)T \) |
| 17 | \( 1 + (-0.707 + 0.707i)T \) |
| good | 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 11 | \( 1 - 5.65iT - 11T^{2} \) |
| 13 | \( 1 - 13iT^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 - 1.41T + 29T^{2} \) |
| 31 | \( 1 + 6T + 31T^{2} \) |
| 37 | \( 1 + (-1 - i)T + 37iT^{2} \) |
| 41 | \( 1 - 5.65iT - 41T^{2} \) |
| 43 | \( 1 + (-7 + 7i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.82 + 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + (7.07 + 7.07i)T + 53iT^{2} \) |
| 59 | \( 1 - 1.41T + 59T^{2} \) |
| 61 | \( 1 - 4T + 61T^{2} \) |
| 67 | \( 1 + (5 + 5i)T + 67iT^{2} \) |
| 71 | \( 1 + 9.89iT - 71T^{2} \) |
| 73 | \( 1 + (-10 + 10i)T - 73iT^{2} \) |
| 79 | \( 1 + 8iT - 79T^{2} \) |
| 83 | \( 1 + (1.41 + 1.41i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.41T + 89T^{2} \) |
| 97 | \( 1 + (-4 - 4i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.307706608213797693451678753034, −8.572832086939430873272564702524, −7.47453271726463794075305255385, −7.30068417466814138996738039711, −6.39571071471323559189155435993, −5.06778389510876232399491319964, −4.50734254921392764120915115438, −3.44494911793915598334218731596, −1.98291576337239375673385072303, −0.44351355740583283098420303783,
0.955848957334250073364273180703, 2.62989182948122126116163397898, 3.42956300122998415919846469468, 4.12036056564128352816723569555, 5.57982639890345905856997664921, 6.31048897383123393196892433403, 7.40927859948473105377340126533, 8.091342595427514494968477634520, 8.733470989441587843176138962979, 9.464249530799597046000019195784