Properties

Label 2-1530-1.1-c1-0-3
Degree $2$
Conductor $1530$
Sign $1$
Analytic cond. $12.2171$
Root an. cond. $3.49529$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 4.89·7-s + 8-s − 10-s + 6.89·13-s − 4.89·14-s + 16-s + 17-s + 4·19-s − 20-s + 4·23-s + 25-s + 6.89·26-s − 4.89·28-s − 6·29-s + 4·31-s + 32-s + 34-s + 4.89·35-s + 6·37-s + 4·38-s − 40-s + 2.89·41-s + 8.89·43-s + 4·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.447·5-s − 1.85·7-s + 0.353·8-s − 0.316·10-s + 1.91·13-s − 1.30·14-s + 0.250·16-s + 0.242·17-s + 0.917·19-s − 0.223·20-s + 0.834·23-s + 0.200·25-s + 1.35·26-s − 0.925·28-s − 1.11·29-s + 0.718·31-s + 0.176·32-s + 0.171·34-s + 0.828·35-s + 0.986·37-s + 0.648·38-s − 0.158·40-s + 0.452·41-s + 1.35·43-s + 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1530\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(12.2171\)
Root analytic conductor: \(3.49529\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1530,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.193313429\)
\(L(\frac12)\) \(\approx\) \(2.193313429\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + 4.89T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 6.89T + 13T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 - 2.89T + 41T^{2} \)
43 \( 1 - 8.89T + 43T^{2} \)
47 \( 1 + 9.79T + 47T^{2} \)
53 \( 1 - 7.79T + 53T^{2} \)
59 \( 1 + 4.89T + 59T^{2} \)
61 \( 1 - 11.7T + 61T^{2} \)
67 \( 1 - 0.898T + 67T^{2} \)
71 \( 1 - 8.89T + 71T^{2} \)
73 \( 1 + 10.8T + 73T^{2} \)
79 \( 1 + 5.79T + 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 - 7.79T + 89T^{2} \)
97 \( 1 + 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.471003516887118096789787385385, −8.748758402490878670715173846308, −7.67169597024086905553929154563, −6.83613441318263370147711341573, −6.14855229390493319182489238105, −5.52453065089165432788118151467, −4.11504912211704662616975498887, −3.49693096062779341182140934798, −2.81352376324471588332664228962, −0.972619348093426944302437554679, 0.972619348093426944302437554679, 2.81352376324471588332664228962, 3.49693096062779341182140934798, 4.11504912211704662616975498887, 5.52453065089165432788118151467, 6.14855229390493319182489238105, 6.83613441318263370147711341573, 7.67169597024086905553929154563, 8.748758402490878670715173846308, 9.471003516887118096789787385385

Graph of the $Z$-function along the critical line