| L(s) = 1 | + (−3.10 + 3.10i)2-s − 11.2i·4-s + (−14.1 − 5.87i)5-s + (−30.3 + 12.5i)7-s + (10.0 + 10.0i)8-s + (62.2 − 25.7i)10-s + (9.27 + 22.4i)11-s + 35.4i·13-s + (55.1 − 133. i)14-s + 27.6·16-s + (27.6 − 64.4i)17-s + (85.2 − 85.2i)19-s + (−66.0 + 159. i)20-s + (−98.2 − 40.7i)22-s + (6.73 + 16.2i)23-s + ⋯ |
| L(s) = 1 | + (−1.09 + 1.09i)2-s − 1.40i·4-s + (−1.26 − 0.525i)5-s + (−1.63 + 0.679i)7-s + (0.443 + 0.443i)8-s + (1.96 − 0.815i)10-s + (0.254 + 0.614i)11-s + 0.757i·13-s + (1.05 − 2.54i)14-s + 0.431·16-s + (0.394 − 0.918i)17-s + (1.02 − 1.02i)19-s + (−0.738 + 1.78i)20-s + (−0.952 − 0.394i)22-s + (0.0610 + 0.147i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.897 - 0.440i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.387488 + 0.0899145i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.387488 + 0.0899145i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 17 | \( 1 + (-27.6 + 64.4i)T \) |
| good | 2 | \( 1 + (3.10 - 3.10i)T - 8iT^{2} \) |
| 5 | \( 1 + (14.1 + 5.87i)T + (88.3 + 88.3i)T^{2} \) |
| 7 | \( 1 + (30.3 - 12.5i)T + (242. - 242. i)T^{2} \) |
| 11 | \( 1 + (-9.27 - 22.4i)T + (-941. + 941. i)T^{2} \) |
| 13 | \( 1 - 35.4iT - 2.19e3T^{2} \) |
| 19 | \( 1 + (-85.2 + 85.2i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + (-6.73 - 16.2i)T + (-8.60e3 + 8.60e3i)T^{2} \) |
| 29 | \( 1 + (-148. - 61.5i)T + (1.72e4 + 1.72e4i)T^{2} \) |
| 31 | \( 1 + (3.83 - 9.26i)T + (-2.10e4 - 2.10e4i)T^{2} \) |
| 37 | \( 1 + (58.4 - 141. i)T + (-3.58e4 - 3.58e4i)T^{2} \) |
| 41 | \( 1 + (118. - 48.9i)T + (4.87e4 - 4.87e4i)T^{2} \) |
| 43 | \( 1 + (388. + 388. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 313. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + (47.5 - 47.5i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-190. - 190. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (343. - 142. i)T + (1.60e5 - 1.60e5i)T^{2} \) |
| 67 | \( 1 - 546.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-262. + 633. i)T + (-2.53e5 - 2.53e5i)T^{2} \) |
| 73 | \( 1 + (-529. - 219. i)T + (2.75e5 + 2.75e5i)T^{2} \) |
| 79 | \( 1 + (-34.7 - 83.7i)T + (-3.48e5 + 3.48e5i)T^{2} \) |
| 83 | \( 1 + (106. - 106. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 611. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-437. - 181. i)T + (6.45e5 + 6.45e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31129275627770021810425093660, −11.79078416377028088404599758611, −9.952449061868131101107358783059, −9.258039582634884678438601090383, −8.499724735182213691140944720816, −7.19596954634703329508041462430, −6.68845424419964799648193599124, −5.11041231972929151450388454568, −3.34820183501052906958751064972, −0.45121948977269598934033713412,
0.76001107283623002841646151527, 3.22138684439417400375877770354, 3.59055354429969834670350262338, 6.21542847284939866727279678700, 7.56541709369024261180424983414, 8.353766189283486587705636297375, 9.748143197984899580941416465633, 10.32355886023300891517773847201, 11.23825176985806390209402851488, 12.17875596993750467727010866872