Properties

Label 2-153-153.11-c1-0-11
Degree $2$
Conductor $153$
Sign $-0.248 + 0.968i$
Analytic cond. $1.22171$
Root an. cond. $1.10531$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.613 − 0.800i)2-s + (0.0530 − 1.73i)3-s + (0.254 − 0.949i)4-s + (3.54 + 0.232i)5-s + (−1.41 + 1.02i)6-s + (0.00291 + 0.0445i)7-s + (−2.77 + 1.15i)8-s + (−2.99 − 0.183i)9-s + (−1.99 − 2.98i)10-s + (4.54 + 3.98i)11-s + (−1.63 − 0.490i)12-s + (−3.51 − 0.940i)13-s + (0.0338 − 0.0296i)14-s + (0.590 − 6.12i)15-s + (0.924 + 0.533i)16-s + (−3.77 − 1.66i)17-s + ⋯
L(s)  = 1  + (−0.434 − 0.565i)2-s + (0.0306 − 0.999i)3-s + (0.127 − 0.474i)4-s + (1.58 + 0.103i)5-s + (−0.578 + 0.416i)6-s + (0.00110 + 0.0168i)7-s + (−0.982 + 0.407i)8-s + (−0.998 − 0.0611i)9-s + (−0.629 − 0.942i)10-s + (1.37 + 1.20i)11-s + (−0.470 − 0.141i)12-s + (−0.973 − 0.260i)13-s + (0.00904 − 0.00793i)14-s + (0.152 − 1.58i)15-s + (0.231 + 0.133i)16-s + (−0.914 − 0.404i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-0.248 + 0.968i$
Analytic conductor: \(1.22171\)
Root analytic conductor: \(1.10531\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1/2),\ -0.248 + 0.968i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.683651 - 0.880901i\)
\(L(\frac12)\) \(\approx\) \(0.683651 - 0.880901i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.0530 + 1.73i)T \)
17 \( 1 + (3.77 + 1.66i)T \)
good2 \( 1 + (0.613 + 0.800i)T + (-0.517 + 1.93i)T^{2} \)
5 \( 1 + (-3.54 - 0.232i)T + (4.95 + 0.652i)T^{2} \)
7 \( 1 + (-0.00291 - 0.0445i)T + (-6.94 + 0.913i)T^{2} \)
11 \( 1 + (-4.54 - 3.98i)T + (1.43 + 10.9i)T^{2} \)
13 \( 1 + (3.51 + 0.940i)T + (11.2 + 6.5i)T^{2} \)
19 \( 1 + (2.46 + 1.02i)T + (13.4 + 13.4i)T^{2} \)
23 \( 1 + (-2.31 - 6.82i)T + (-18.2 + 14.0i)T^{2} \)
29 \( 1 + (-0.0353 + 0.0174i)T + (17.6 - 23.0i)T^{2} \)
31 \( 1 + (-2.74 - 3.13i)T + (-4.04 + 30.7i)T^{2} \)
37 \( 1 + (1.01 + 5.09i)T + (-34.1 + 14.1i)T^{2} \)
41 \( 1 + (-2.12 + 4.30i)T + (-24.9 - 32.5i)T^{2} \)
43 \( 1 + (0.107 - 0.814i)T + (-41.5 - 11.1i)T^{2} \)
47 \( 1 + (1.62 - 0.435i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (-1.17 + 2.83i)T + (-37.4 - 37.4i)T^{2} \)
59 \( 1 + (7.99 + 6.13i)T + (15.2 + 56.9i)T^{2} \)
61 \( 1 + (0.0920 - 0.00603i)T + (60.4 - 7.96i)T^{2} \)
67 \( 1 + (5.04 - 2.91i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-5.65 + 1.12i)T + (65.5 - 27.1i)T^{2} \)
73 \( 1 + (6.75 + 4.51i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (-3.54 + 4.04i)T + (-10.3 - 78.3i)T^{2} \)
83 \( 1 + (-4.62 + 3.54i)T + (21.4 - 80.1i)T^{2} \)
89 \( 1 + (12.7 - 12.7i)T - 89iT^{2} \)
97 \( 1 + (-1.60 - 3.25i)T + (-59.0 + 76.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58034568018885197249511777215, −11.73900368410127383101171077308, −10.59206154914803601502633230836, −9.463986040007513046725506904027, −9.105062034929366911127220153102, −7.11144029195743469551985826563, −6.36272289576428696817889492380, −5.21947504781395389421292896110, −2.44175657441826020968316640226, −1.60459644646666084148551493204, 2.69792758899439081003852382452, 4.35537033768961610831862606371, 5.97593138041135256178041362039, 6.58779682040571446604166793425, 8.544338232231612902363741100744, 9.051100242412368592962927403857, 9.929137731520566990538620402520, 11.05168028307650469359426364120, 12.22711010116110266009898385237, 13.49727740187316213044237016460

Graph of the $Z$-function along the critical line