| L(s) = 1 | + (1.84 + 1.06i)2-s + (−1.73 − 0.00129i)3-s + (1.27 + 2.20i)4-s + (3.52 + 0.945i)5-s + (−3.19 − 1.84i)6-s + (−3.69 + 0.990i)7-s + 1.15i·8-s + (2.99 + 0.00449i)9-s + (5.50 + 5.50i)10-s + (0.437 − 0.117i)11-s + (−2.19 − 3.81i)12-s + (−0.231 − 0.401i)13-s + (−7.88 − 2.11i)14-s + (−6.11 − 1.64i)15-s + (1.31 − 2.26i)16-s + (−3.81 − 1.56i)17-s + ⋯ |
| L(s) = 1 | + (1.30 + 0.753i)2-s + (−0.999 − 0.000748i)3-s + (0.635 + 1.10i)4-s + (1.57 + 0.422i)5-s + (−1.30 − 0.754i)6-s + (−1.39 + 0.374i)7-s + 0.408i·8-s + (0.999 + 0.00149i)9-s + (1.74 + 1.74i)10-s + (0.131 − 0.0353i)11-s + (−0.634 − 1.10i)12-s + (−0.0642 − 0.111i)13-s + (−2.10 − 0.564i)14-s + (−1.57 − 0.424i)15-s + (0.327 − 0.567i)16-s + (−0.925 − 0.378i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.412 - 0.910i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.412 - 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.48295 + 0.956376i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.48295 + 0.956376i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.73 + 0.00129i)T \) |
| 17 | \( 1 + (3.81 + 1.56i)T \) |
| good | 2 | \( 1 + (-1.84 - 1.06i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-3.52 - 0.945i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (3.69 - 0.990i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.437 + 0.117i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (0.231 + 0.401i)T + (-6.5 + 11.2i)T^{2} \) |
| 19 | \( 1 + 4.69iT - 19T^{2} \) |
| 23 | \( 1 + (0.317 - 1.18i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (2.13 + 7.95i)T + (-25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (-3.26 - 0.875i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (3.98 - 3.98i)T - 37iT^{2} \) |
| 41 | \( 1 + (2.47 - 9.24i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-3.86 - 2.22i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.56 - 2.71i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 1.65iT - 53T^{2} \) |
| 59 | \( 1 + (6.02 - 3.47i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.19 - 1.66i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-6.26 - 10.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.73 + 1.73i)T - 71iT^{2} \) |
| 73 | \( 1 + (4.28 - 4.28i)T - 73iT^{2} \) |
| 79 | \( 1 + (-11.3 + 3.05i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (0.377 + 0.218i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 13.6T + 89T^{2} \) |
| 97 | \( 1 + (1.90 + 7.09i)T + (-84.0 + 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32941506659395299342594199099, −12.63286909142334479109812618677, −11.42677934380044738163274626556, −10.03768250674551349169428822606, −9.434532138863566741010561258437, −6.98889442362273358305997785875, −6.33562414925598469455806793110, −5.80781251555879395799976789136, −4.63244210493018598623930661926, −2.81898831160972205086696201267,
1.90447388520619164191513514785, 3.72186642425258321558523098341, 5.08482002746423674195626222187, 5.98890869031783399570426074336, 6.67594642427589717915446361840, 9.181585179054516956413883043751, 10.21879223467155007389022056721, 10.77284827311997008006302990765, 12.31791130280921744660632208130, 12.69463899876240348792252707562