Properties

Label 2-153-1.1-c3-0-6
Degree $2$
Conductor $153$
Sign $1$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 7·4-s + 20·5-s − 2·7-s − 15·8-s + 20·10-s + 48·11-s − 14·13-s − 2·14-s + 41·16-s + 17·17-s + 92·19-s − 140·20-s + 48·22-s + 122·23-s + 275·25-s − 14·26-s + 14·28-s + 36·29-s − 182·31-s + 161·32-s + 17·34-s − 40·35-s + 76·37-s + 92·38-s − 300·40-s − 294·41-s + ⋯
L(s)  = 1  + 0.353·2-s − 7/8·4-s + 1.78·5-s − 0.107·7-s − 0.662·8-s + 0.632·10-s + 1.31·11-s − 0.298·13-s − 0.0381·14-s + 0.640·16-s + 0.242·17-s + 1.11·19-s − 1.56·20-s + 0.465·22-s + 1.10·23-s + 11/5·25-s − 0.105·26-s + 0.0944·28-s + 0.230·29-s − 1.05·31-s + 0.889·32-s + 0.0857·34-s − 0.193·35-s + 0.337·37-s + 0.392·38-s − 1.18·40-s − 1.11·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.261351985\)
\(L(\frac12)\) \(\approx\) \(2.261351985\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 - p T \)
good2 \( 1 - T + p^{3} T^{2} \)
5 \( 1 - 4 p T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 - 48 T + p^{3} T^{2} \)
13 \( 1 + 14 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 - 122 T + p^{3} T^{2} \)
29 \( 1 - 36 T + p^{3} T^{2} \)
31 \( 1 + 182 T + p^{3} T^{2} \)
37 \( 1 - 76 T + p^{3} T^{2} \)
41 \( 1 + 294 T + p^{3} T^{2} \)
43 \( 1 + 428 T + p^{3} T^{2} \)
47 \( 1 - 12 T + p^{3} T^{2} \)
53 \( 1 - 234 T + p^{3} T^{2} \)
59 \( 1 - 540 T + p^{3} T^{2} \)
61 \( 1 + 820 T + p^{3} T^{2} \)
67 \( 1 - 700 T + p^{3} T^{2} \)
71 \( 1 + 794 T + p^{3} T^{2} \)
73 \( 1 + 1038 T + p^{3} T^{2} \)
79 \( 1 - 858 T + p^{3} T^{2} \)
83 \( 1 + 1052 T + p^{3} T^{2} \)
89 \( 1 + 1102 T + p^{3} T^{2} \)
97 \( 1 - 710 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84572032586095150129070280011, −11.68873954698695547292313537973, −10.12340851965310588877862971314, −9.468567662220988120960864940459, −8.777328738222094048189913970631, −6.87966353094760050551239872917, −5.78427121583277909087922347724, −4.90786977862438319421197028568, −3.24550987121121250197287421243, −1.38427781376150785635910606005, 1.38427781376150785635910606005, 3.24550987121121250197287421243, 4.90786977862438319421197028568, 5.78427121583277909087922347724, 6.87966353094760050551239872917, 8.777328738222094048189913970631, 9.468567662220988120960864940459, 10.12340851965310588877862971314, 11.68873954698695547292313537973, 12.84572032586095150129070280011

Graph of the $Z$-function along the critical line