L(s) = 1 | + 1.47·2-s − 5.81·4-s + 11.3·5-s − 28.3·7-s − 20.4·8-s + 16.7·10-s − 56.2·11-s + 24.3·13-s − 41.9·14-s + 16.4·16-s + 17·17-s − 34.0·19-s − 65.9·20-s − 83.0·22-s − 108.·23-s + 3.55·25-s + 36.0·26-s + 165.·28-s − 266.·29-s − 207.·31-s + 187.·32-s + 25.1·34-s − 321.·35-s + 380.·37-s − 50.2·38-s − 231.·40-s + 451.·41-s + ⋯ |
L(s) = 1 | + 0.522·2-s − 0.727·4-s + 1.01·5-s − 1.53·7-s − 0.901·8-s + 0.529·10-s − 1.54·11-s + 0.520·13-s − 0.800·14-s + 0.256·16-s + 0.242·17-s − 0.410·19-s − 0.737·20-s − 0.804·22-s − 0.982·23-s + 0.0284·25-s + 0.271·26-s + 1.11·28-s − 1.70·29-s − 1.20·31-s + 1.03·32-s + 0.126·34-s − 1.55·35-s + 1.68·37-s − 0.214·38-s − 0.914·40-s + 1.72·41-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(153s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1−17T |
good | 2 | 1−1.47T+8T2 |
| 5 | 1−11.3T+125T2 |
| 7 | 1+28.3T+343T2 |
| 11 | 1+56.2T+1.33e3T2 |
| 13 | 1−24.3T+2.19e3T2 |
| 19 | 1+34.0T+6.85e3T2 |
| 23 | 1+108.T+1.21e4T2 |
| 29 | 1+266.T+2.43e4T2 |
| 31 | 1+207.T+2.97e4T2 |
| 37 | 1−380.T+5.06e4T2 |
| 41 | 1−451.T+6.89e4T2 |
| 43 | 1−395.T+7.95e4T2 |
| 47 | 1+179.T+1.03e5T2 |
| 53 | 1+184.T+1.48e5T2 |
| 59 | 1+151.T+2.05e5T2 |
| 61 | 1−59.0T+2.26e5T2 |
| 67 | 1+56.7T+3.00e5T2 |
| 71 | 1−265.T+3.57e5T2 |
| 73 | 1+704.T+3.89e5T2 |
| 79 | 1−509.T+4.93e5T2 |
| 83 | 1−122.T+5.71e5T2 |
| 89 | 1+710.T+7.04e5T2 |
| 97 | 1+834.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.70150392833923993168985048737, −10.84234923602669132307129689891, −9.742029771866160122736792023100, −9.284618405104493347295221023592, −7.77153077594818912779379293826, −6.04687634561477708950953865143, −5.62869598682938290675957681616, −3.93722421679993483925939503786, −2.61568117400199109494512535237, 0,
2.61568117400199109494512535237, 3.93722421679993483925939503786, 5.62869598682938290675957681616, 6.04687634561477708950953865143, 7.77153077594818912779379293826, 9.284618405104493347295221023592, 9.742029771866160122736792023100, 10.84234923602669132307129689891, 12.70150392833923993168985048737