L(s) = 1 | + 5.03·2-s + 17.3·4-s − 0.885·5-s + 3.81·7-s + 46.9·8-s − 4.45·10-s + 52.3·11-s − 8.06·13-s + 19.2·14-s + 97.5·16-s + 17·17-s − 66.5·19-s − 15.3·20-s + 263.·22-s − 180.·23-s − 124.·25-s − 40.5·26-s + 66.1·28-s + 41.2·29-s − 34.9·31-s + 115.·32-s + 85.5·34-s − 3.38·35-s + 130.·37-s − 334.·38-s − 41.5·40-s + 17.9·41-s + ⋯ |
L(s) = 1 | + 1.77·2-s + 2.16·4-s − 0.0792·5-s + 0.206·7-s + 2.07·8-s − 0.140·10-s + 1.43·11-s − 0.171·13-s + 0.366·14-s + 1.52·16-s + 0.242·17-s − 0.803·19-s − 0.171·20-s + 2.55·22-s − 1.63·23-s − 0.993·25-s − 0.305·26-s + 0.446·28-s + 0.264·29-s − 0.202·31-s + 0.638·32-s + 0.431·34-s − 0.0163·35-s + 0.579·37-s − 1.42·38-s − 0.164·40-s + 0.0682·41-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(153s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
4.660620220 |
L(21) |
≈ |
4.660620220 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1−17T |
good | 2 | 1−5.03T+8T2 |
| 5 | 1+0.885T+125T2 |
| 7 | 1−3.81T+343T2 |
| 11 | 1−52.3T+1.33e3T2 |
| 13 | 1+8.06T+2.19e3T2 |
| 19 | 1+66.5T+6.85e3T2 |
| 23 | 1+180.T+1.21e4T2 |
| 29 | 1−41.2T+2.43e4T2 |
| 31 | 1+34.9T+2.97e4T2 |
| 37 | 1−130.T+5.06e4T2 |
| 41 | 1−17.9T+6.89e4T2 |
| 43 | 1−277.T+7.95e4T2 |
| 47 | 1+463.T+1.03e5T2 |
| 53 | 1−329.T+1.48e5T2 |
| 59 | 1+678.T+2.05e5T2 |
| 61 | 1−340.T+2.26e5T2 |
| 67 | 1−15.3T+3.00e5T2 |
| 71 | 1−670.T+3.57e5T2 |
| 73 | 1−193.T+3.89e5T2 |
| 79 | 1−1.08e3T+4.93e5T2 |
| 83 | 1−865.T+5.71e5T2 |
| 89 | 1+1.12e3T+7.04e5T2 |
| 97 | 1+379.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.48489624373236775736123338260, −11.88052770256101306632685248067, −11.02737283016101839651636562940, −9.624396572606530069461395954809, −8.002435324201369610023989484499, −6.65283483138256497126441004186, −5.87803139257014233075472377117, −4.47662001400708767625410092592, −3.66187611369757625938922168409, −1.98678942895908199373291215876,
1.98678942895908199373291215876, 3.66187611369757625938922168409, 4.47662001400708767625410092592, 5.87803139257014233075472377117, 6.65283483138256497126441004186, 8.002435324201369610023989484499, 9.624396572606530069461395954809, 11.02737283016101839651636562940, 11.88052770256101306632685248067, 12.48489624373236775736123338260