L(s) = 1 | + 0.414i·3-s + (0.707 − 2.12i)5-s + 4.41i·7-s + 2.82·9-s + 1.41·11-s + 5.82i·13-s + (0.878 + 0.292i)15-s − i·17-s − 19-s − 1.82·21-s − 0.757i·23-s + (−3.99 − 3i)25-s + 2.41i·27-s + 0.171·29-s − 6.24·31-s + ⋯ |
L(s) = 1 | + 0.239i·3-s + (0.316 − 0.948i)5-s + 1.66i·7-s + 0.942·9-s + 0.426·11-s + 1.61i·13-s + (0.226 + 0.0756i)15-s − 0.242i·17-s − 0.229·19-s − 0.398·21-s − 0.157i·23-s + (−0.799 − 0.600i)25-s + 0.464i·27-s + 0.0318·29-s − 1.12·31-s + ⋯ |
Λ(s)=(=(1520s/2ΓC(s)L(s)(0.316−0.948i)Λ(2−s)
Λ(s)=(=(1520s/2ΓC(s+1/2)L(s)(0.316−0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
1520
= 24⋅5⋅19
|
Sign: |
0.316−0.948i
|
Analytic conductor: |
12.1372 |
Root analytic conductor: |
3.48385 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1520(609,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1520, ( :1/2), 0.316−0.948i)
|
Particular Values
L(1) |
≈ |
1.810142745 |
L(21) |
≈ |
1.810142745 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.707+2.12i)T |
| 19 | 1+T |
good | 3 | 1−0.414iT−3T2 |
| 7 | 1−4.41iT−7T2 |
| 11 | 1−1.41T+11T2 |
| 13 | 1−5.82iT−13T2 |
| 17 | 1+iT−17T2 |
| 23 | 1+0.757iT−23T2 |
| 29 | 1−0.171T+29T2 |
| 31 | 1+6.24T+31T2 |
| 37 | 1−8.48iT−37T2 |
| 41 | 1+4.24T+41T2 |
| 43 | 1+1.75iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1−5.48iT−53T2 |
| 59 | 1−6.89T+59T2 |
| 61 | 1−14.2T+61T2 |
| 67 | 1−4.75iT−67T2 |
| 71 | 1−13.4T+71T2 |
| 73 | 1−11.4iT−73T2 |
| 79 | 1+6.48T+79T2 |
| 83 | 1+14.4iT−83T2 |
| 89 | 1+7.07T+89T2 |
| 97 | 1−0.343iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.483604460314060470062975422760, −8.888262113162242075935466997130, −8.414070790121688220854069250812, −7.08136136242458489342506515435, −6.32502142692066894376224366107, −5.38861425307692806763428886269, −4.69878047542539799213847256189, −3.83994115418674686283762026751, −2.29581768583533008892180805253, −1.53091810429916511590236429102,
0.74638202948797869613309201616, 2.00809282202571200259223964157, 3.46681132702447006265933140103, 3.92699870702487615962091440827, 5.19670382211094827126225664815, 6.24842408461878396296566214830, 7.09657347038480007429552401362, 7.41988343917465567438021961684, 8.275902157915052970183863972050, 9.674993082000573170215335481647