Properties

Label 2-1520-1.1-c1-0-22
Degree $2$
Conductor $1520$
Sign $-1$
Analytic cond. $12.1372$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s − 4·7-s + 9-s + 4·11-s − 2·15-s + 6·17-s + 19-s + 8·21-s − 8·23-s + 25-s + 4·27-s − 6·29-s + 8·31-s − 8·33-s − 4·35-s − 8·37-s − 2·41-s + 45-s − 12·47-s + 9·49-s − 12·51-s + 4·53-s + 4·55-s − 2·57-s − 8·59-s − 14·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.516·15-s + 1.45·17-s + 0.229·19-s + 1.74·21-s − 1.66·23-s + 1/5·25-s + 0.769·27-s − 1.11·29-s + 1.43·31-s − 1.39·33-s − 0.676·35-s − 1.31·37-s − 0.312·41-s + 0.149·45-s − 1.75·47-s + 9/7·49-s − 1.68·51-s + 0.549·53-s + 0.539·55-s − 0.264·57-s − 1.04·59-s − 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1520\)    =    \(2^{4} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(12.1372\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.414389171153941052152571176806, −8.306558588442832701284063292788, −7.15092239567899718438965748252, −6.26604533373139617436495529729, −6.07553649243771927211326383485, −5.14236160489505260986626044288, −3.89039366794407092271004025254, −3.07425032684048770058081362284, −1.43164889163469816022501322949, 0, 1.43164889163469816022501322949, 3.07425032684048770058081362284, 3.89039366794407092271004025254, 5.14236160489505260986626044288, 6.07553649243771927211326383485, 6.26604533373139617436495529729, 7.15092239567899718438965748252, 8.306558588442832701284063292788, 9.414389171153941052152571176806

Graph of the $Z$-function along the critical line