Properties

Label 2-1520-1.1-c1-0-12
Degree $2$
Conductor $1520$
Sign $1$
Analytic cond. $12.1372$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·3-s − 5-s + 2.82·7-s − 0.999·9-s + 0.828·11-s + 3.41·13-s − 1.41·15-s + 4.82·17-s + 19-s + 4.00·21-s − 4·23-s + 25-s − 5.65·27-s − 0.828·29-s + 1.17·33-s − 2.82·35-s + 10.2·37-s + 4.82·39-s − 0.828·41-s − 2.82·43-s + 0.999·45-s + 8.48·47-s + 1.00·49-s + 6.82·51-s + 13.0·53-s − 0.828·55-s + 1.41·57-s + ⋯
L(s)  = 1  + 0.816·3-s − 0.447·5-s + 1.06·7-s − 0.333·9-s + 0.249·11-s + 0.946·13-s − 0.365·15-s + 1.17·17-s + 0.229·19-s + 0.872·21-s − 0.834·23-s + 0.200·25-s − 1.08·27-s − 0.153·29-s + 0.203·33-s − 0.478·35-s + 1.68·37-s + 0.773·39-s − 0.129·41-s − 0.431·43-s + 0.149·45-s + 1.23·47-s + 0.142·49-s + 0.956·51-s + 1.79·53-s − 0.111·55-s + 0.187·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1520\)    =    \(2^{4} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(12.1372\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.431175751\)
\(L(\frac12)\) \(\approx\) \(2.431175751\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 - 1.41T + 3T^{2} \)
7 \( 1 - 2.82T + 7T^{2} \)
11 \( 1 - 0.828T + 11T^{2} \)
13 \( 1 - 3.41T + 13T^{2} \)
17 \( 1 - 4.82T + 17T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 0.828T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 10.2T + 37T^{2} \)
41 \( 1 + 0.828T + 41T^{2} \)
43 \( 1 + 2.82T + 43T^{2} \)
47 \( 1 - 8.48T + 47T^{2} \)
53 \( 1 - 13.0T + 53T^{2} \)
59 \( 1 + 2.82T + 59T^{2} \)
61 \( 1 + 1.65T + 61T^{2} \)
67 \( 1 - 9.41T + 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 - 9.17T + 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + 3.17T + 89T^{2} \)
97 \( 1 + 2.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.279899583000994898532622480357, −8.497137364131764817345041504282, −8.002401702181419939965463193504, −7.41891593420163043447895604177, −6.11906296075235778613866779405, −5.35388322309231451874930470982, −4.18096256886026010519908576510, −3.49860584015460536087637147757, −2.39117902522840006617867281474, −1.16703527292918390729128663720, 1.16703527292918390729128663720, 2.39117902522840006617867281474, 3.49860584015460536087637147757, 4.18096256886026010519908576510, 5.35388322309231451874930470982, 6.11906296075235778613866779405, 7.41891593420163043447895604177, 8.002401702181419939965463193504, 8.497137364131764817345041504282, 9.279899583000994898532622480357

Graph of the $Z$-function along the critical line