L(s) = 1 | + 1.05·5-s + (1.79 + 1.94i)7-s + 6.24i·11-s + (−0.872 − 0.503i)13-s + (−3.26 + 5.66i)17-s + (1.73 − 1.00i)19-s − 4.40i·23-s − 3.88·25-s + (−6.12 + 3.53i)29-s + (−2.07 + 1.19i)31-s + (1.89 + 2.04i)35-s + (−3.64 − 6.30i)37-s + (−1.80 + 3.11i)41-s + (1.60 + 2.78i)43-s + (1.87 − 3.23i)47-s + ⋯ |
L(s) = 1 | + 0.472·5-s + (0.679 + 0.733i)7-s + 1.88i·11-s + (−0.241 − 0.139i)13-s + (−0.792 + 1.37i)17-s + (0.397 − 0.229i)19-s − 0.917i·23-s − 0.777·25-s + (−1.13 + 0.657i)29-s + (−0.372 + 0.214i)31-s + (0.320 + 0.346i)35-s + (−0.598 − 1.03i)37-s + (−0.281 + 0.487i)41-s + (0.244 + 0.424i)43-s + (0.272 − 0.472i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.200 - 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.200 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.576412023\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.576412023\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.79 - 1.94i)T \) |
good | 5 | \( 1 - 1.05T + 5T^{2} \) |
| 11 | \( 1 - 6.24iT - 11T^{2} \) |
| 13 | \( 1 + (0.872 + 0.503i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.26 - 5.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.73 + 1.00i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.40iT - 23T^{2} \) |
| 29 | \( 1 + (6.12 - 3.53i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.07 - 1.19i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.64 + 6.30i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.80 - 3.11i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.60 - 2.78i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.87 + 3.23i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.02 - 3.47i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.67 + 11.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.10 - 4.10i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0613 + 0.106i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.37iT - 71T^{2} \) |
| 73 | \( 1 + (-14.4 - 8.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.43 + 7.67i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.07 - 1.86i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.23 - 3.86i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.960 + 0.554i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.591172901863593481938045816692, −9.018822512603669822891565957100, −8.105675494672506965062293685081, −7.30545999913212469215290001912, −6.46550684963218043095110366574, −5.48646811303963476504347309169, −4.78842448868608835817015971479, −3.86744298360562981433153865850, −2.23428221540792058321919368489, −1.84249027818995275449931319339,
0.59442165330644210035610788178, 1.93537690202619705265437441074, 3.20044030527623932560835073469, 4.09501923667778530276902966221, 5.26287168053825025429324867653, 5.80144515686492004459540821413, 6.91104736211922757562688882628, 7.64089069431536652649357234537, 8.453688429296484330183927403367, 9.276217182989721983068993621800