L(s) = 1 | + (−1.22 − 0.707i)5-s + (−0.5 − 0.866i)7-s + (−1.22 + 0.707i)17-s + (−0.5 + 0.866i)19-s + (−1.22 − 0.707i)23-s + (0.499 + 0.866i)25-s + 1.41i·29-s + (−0.5 − 0.866i)31-s + 1.41i·35-s − 1.41i·41-s − 43-s + (−1.22 − 0.707i)47-s + (−0.499 + 0.866i)49-s + (1.22 − 0.707i)53-s + (−0.5 + 0.866i)61-s + ⋯ |
L(s) = 1 | + (−1.22 − 0.707i)5-s + (−0.5 − 0.866i)7-s + (−1.22 + 0.707i)17-s + (−0.5 + 0.866i)19-s + (−1.22 − 0.707i)23-s + (0.499 + 0.866i)25-s + 1.41i·29-s + (−0.5 − 0.866i)31-s + 1.41i·35-s − 1.41i·41-s − 43-s + (−1.22 − 0.707i)47-s + (−0.499 + 0.866i)49-s + (1.22 − 0.707i)53-s + (−0.5 + 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2300220928\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2300220928\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - 1.41iT - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.074830753296028819792620396905, −8.434421188555495422250046711256, −7.77525509038380861539430932005, −6.92461119943155048315300655522, −6.13291220823556469423796364741, −4.87141283895998802550395313181, −4.02266228333766174654521631316, −3.61233510932103958253907169298, −1.89125043096980056946884646816, −0.17344556651139102933713112430,
2.27137207591839449645698756223, 3.13747056925689054751223392936, 4.07885696346475108087784249844, 4.98809290396899686207334730754, 6.23098899497012005065889719163, 6.77828824004220703879908374950, 7.69254309801200419555736199604, 8.398419827036235140721738447559, 9.237885691877970537680944870884, 9.983653567746084048049611642881