Properties

Label 2-1512-168.83-c0-0-1
Degree $2$
Conductor $1512$
Sign $1$
Analytic cond. $0.754586$
Root an. cond. $0.868669$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s − 13-s − 14-s + 16-s + 17-s + 23-s + 25-s + 26-s + 28-s + 29-s − 31-s − 32-s − 34-s − 2·41-s − 43-s − 46-s + 49-s − 50-s − 52-s + 53-s − 56-s − 58-s + 59-s + 2·61-s + ⋯
L(s)  = 1  − 2-s + 4-s + 7-s − 8-s − 13-s − 14-s + 16-s + 17-s + 23-s + 25-s + 26-s + 28-s + 29-s − 31-s − 32-s − 34-s − 2·41-s − 43-s − 46-s + 49-s − 50-s − 52-s + 53-s − 56-s − 58-s + 59-s + 2·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(0.754586\)
Root analytic conductor: \(0.868669\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1512} (755, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8095573329\)
\(L(\frac12)\) \(\approx\) \(0.8095573329\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( ( 1 - T )( 1 + T ) \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( 1 + T + T^{2} \)
17 \( 1 - T + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 - T + T^{2} \)
29 \( 1 - T + T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 + T )^{2} \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 - T + T^{2} \)
59 \( 1 - T + T^{2} \)
61 \( ( 1 - T )^{2} \)
67 \( 1 + T + T^{2} \)
71 \( 1 - T + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 + T )^{2} \)
89 \( 1 - T + T^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.750643966672921471953154273707, −8.664191360235917744395649637337, −8.301526262384710623106853650446, −7.25362798030586643970491810829, −6.87926158098828170409240684387, −5.49646380923950997989719765687, −4.90261392942102129869788172941, −3.40129930843034292577983456743, −2.34654157073656844742338874000, −1.19142370224948957587992909629, 1.19142370224948957587992909629, 2.34654157073656844742338874000, 3.40129930843034292577983456743, 4.90261392942102129869788172941, 5.49646380923950997989719765687, 6.87926158098828170409240684387, 7.25362798030586643970491810829, 8.301526262384710623106853650446, 8.664191360235917744395649637337, 9.750643966672921471953154273707

Graph of the $Z$-function along the critical line