L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (1 + 1.73i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + (−0.999 + 1.73i)10-s + (−0.5 + 0.866i)11-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 1.99·20-s − 0.999·22-s + (−1.49 + 2.59i)25-s + 0.999·28-s + 29-s + (0.5 − 0.866i)31-s + (0.499 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (1 + 1.73i)5-s + (−0.5 − 0.866i)7-s − 0.999·8-s + (−0.999 + 1.73i)10-s + (−0.5 + 0.866i)11-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 1.99·20-s − 0.999·22-s + (−1.49 + 2.59i)25-s + 0.999·28-s + 29-s + (0.5 − 0.866i)31-s + (0.499 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.382601546\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.382601546\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.988100436282609546683849615854, −9.378366899368923992853388883516, −8.009980884085348127152751471903, −7.27421347621101733309611860769, −6.72505517689478139657666045799, −6.18093034966615582899759535044, −5.21505584794090711478529307604, −4.08592782930403983622436601918, −3.14857155654038918398815354666, −2.32067434408937287447326352935,
0.974220772368456107092674549360, 2.15421677635689605844984170143, 3.08170338825545638706794324898, 4.42069401590294545422441860899, 5.18650165504060676898844361185, 5.74709766774326415217261275120, 6.40403060421369133313616565384, 8.296773198397044591400360927913, 8.730894382571811002654354041195, 9.408640769698783132152085830997