L(s) = 1 | + (−0.173 + 0.984i)2-s + (0.866 + 0.5i)3-s + (−0.939 − 0.342i)4-s + (−0.984 + 0.826i)5-s + (−0.642 + 0.766i)6-s + (0.939 − 0.342i)7-s + (0.5 − 0.866i)8-s + (0.499 + 0.866i)9-s + (−0.642 − 1.11i)10-s + (−0.642 − 0.766i)12-s + (0.300 + 1.70i)13-s + (0.173 + 0.984i)14-s + (−1.26 + 0.223i)15-s + (0.766 + 0.642i)16-s + (−0.939 + 0.342i)18-s + (0.342 − 0.592i)19-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)2-s + (0.866 + 0.5i)3-s + (−0.939 − 0.342i)4-s + (−0.984 + 0.826i)5-s + (−0.642 + 0.766i)6-s + (0.939 − 0.342i)7-s + (0.5 − 0.866i)8-s + (0.499 + 0.866i)9-s + (−0.642 − 1.11i)10-s + (−0.642 − 0.766i)12-s + (0.300 + 1.70i)13-s + (0.173 + 0.984i)14-s + (−1.26 + 0.223i)15-s + (0.766 + 0.642i)16-s + (−0.939 + 0.342i)18-s + (0.342 − 0.592i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.120385078\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.120385078\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.173 - 0.984i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.939 + 0.342i)T \) |
good | 5 | \( 1 + (0.984 - 0.826i)T + (0.173 - 0.984i)T^{2} \) |
| 11 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 13 | \( 1 + (-0.300 - 1.70i)T + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.342 + 0.592i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (1.85 - 0.673i)T + (0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.326 + 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.300 + 1.70i)T + (-0.939 - 0.342i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.797966151333718884327183454487, −8.905227936928137838912167777113, −8.354444345113343067639585999499, −7.49966493229543442365620090773, −7.16856118626904679481175143220, −6.12042610299801452667507156886, −4.66858404981101043099200852949, −4.29007961868071193869301706719, −3.43852569292816069791351550885, −1.89305935930304007011516054393,
0.955939526610726520653985970023, 2.03494176894730960570660012380, 3.24812393048910195722008732524, 3.94828876800952498529165780704, 4.89627674824550037028844919161, 5.84027968274509507466772002760, 7.66064234805396664880410893716, 7.980527338382261170815197188842, 8.381803023107319908205720495858, 9.233406604496555533308437553358