L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.5 − 0.866i)3-s + (0.766 − 0.642i)4-s + (−0.0603 − 0.342i)5-s + (−0.173 + 0.984i)6-s + (0.766 + 0.642i)7-s + (−0.500 + 0.866i)8-s + (−0.499 − 0.866i)9-s + (0.173 + 0.300i)10-s + (−0.173 − 0.984i)12-s + (−0.939 − 0.342i)13-s + (−0.939 − 0.342i)14-s + (−0.326 − 0.118i)15-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)18-s + (0.766 − 1.32i)19-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.5 − 0.866i)3-s + (0.766 − 0.642i)4-s + (−0.0603 − 0.342i)5-s + (−0.173 + 0.984i)6-s + (0.766 + 0.642i)7-s + (−0.500 + 0.866i)8-s + (−0.499 − 0.866i)9-s + (0.173 + 0.300i)10-s + (−0.173 − 0.984i)12-s + (−0.939 − 0.342i)13-s + (−0.939 − 0.342i)14-s + (−0.326 − 0.118i)15-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)18-s + (0.766 − 1.32i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8761653710\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8761653710\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.939 - 0.342i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.766 - 0.642i)T \) |
good | 5 | \( 1 + (0.0603 + 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 13 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.347 + 1.96i)T + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-1.43 - 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.43 - 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.182754842079200878354335947418, −8.701766547343141521173008452868, −7.983472430782914252942031286203, −7.29977213026675343929001813619, −6.62951628354204576525343710642, −5.52479131849199488348580574758, −4.83297147576109621112953991382, −2.93048857429555376776430433512, −2.21556149684753133361914582826, −0.966028394652745167629838444851,
1.60402372327110528461796493493, 2.77046428524558021132973893208, 3.66585119906498387196541395439, 4.57325274169969847879572092652, 5.64263397782294560973694644746, 7.05615873617637285277927350563, 7.57215632724775239327661320581, 8.329215264840815925599672518200, 9.081948671367050772080517774448, 9.983092799013079544120223523519