Properties

Label 2-1512-1.1-c3-0-53
Degree $2$
Conductor $1512$
Sign $-1$
Analytic cond. $89.2108$
Root an. cond. $9.44515$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 7·7-s − 12·11-s + 27·13-s + 61·17-s − 62·19-s − 13·23-s − 109·25-s − 19·29-s − 329·31-s − 28·35-s + 42·37-s + 310·41-s + 491·43-s + 290·47-s + 49·49-s − 373·53-s + 48·55-s + 111·59-s − 254·61-s − 108·65-s − 297·67-s + 93·71-s − 254·73-s − 84·77-s − 614·79-s − 1.38e3·83-s + ⋯
L(s)  = 1  − 0.357·5-s + 0.377·7-s − 0.328·11-s + 0.576·13-s + 0.870·17-s − 0.748·19-s − 0.117·23-s − 0.871·25-s − 0.121·29-s − 1.90·31-s − 0.135·35-s + 0.186·37-s + 1.18·41-s + 1.74·43-s + 0.900·47-s + 1/7·49-s − 0.966·53-s + 0.117·55-s + 0.244·59-s − 0.533·61-s − 0.206·65-s − 0.541·67-s + 0.155·71-s − 0.407·73-s − 0.124·77-s − 0.874·79-s − 1.82·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $-1$
Analytic conductor: \(89.2108\)
Root analytic conductor: \(9.44515\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1512,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p T \)
good5 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 - 27 T + p^{3} T^{2} \)
17 \( 1 - 61 T + p^{3} T^{2} \)
19 \( 1 + 62 T + p^{3} T^{2} \)
23 \( 1 + 13 T + p^{3} T^{2} \)
29 \( 1 + 19 T + p^{3} T^{2} \)
31 \( 1 + 329 T + p^{3} T^{2} \)
37 \( 1 - 42 T + p^{3} T^{2} \)
41 \( 1 - 310 T + p^{3} T^{2} \)
43 \( 1 - 491 T + p^{3} T^{2} \)
47 \( 1 - 290 T + p^{3} T^{2} \)
53 \( 1 + 373 T + p^{3} T^{2} \)
59 \( 1 - 111 T + p^{3} T^{2} \)
61 \( 1 + 254 T + p^{3} T^{2} \)
67 \( 1 + 297 T + p^{3} T^{2} \)
71 \( 1 - 93 T + p^{3} T^{2} \)
73 \( 1 + 254 T + p^{3} T^{2} \)
79 \( 1 + 614 T + p^{3} T^{2} \)
83 \( 1 + 1380 T + p^{3} T^{2} \)
89 \( 1 - T + p^{3} T^{2} \)
97 \( 1 + 488 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.716302662538766670762412431908, −7.75671496826380939474770842200, −7.38897701911000281200115001990, −6.07695144800745119247101561474, −5.53167245173770478134265532752, −4.34785541031158847846089698897, −3.66652301188144604024415600409, −2.46390892828116164518446291193, −1.32606508077459305315742886643, 0, 1.32606508077459305315742886643, 2.46390892828116164518446291193, 3.66652301188144604024415600409, 4.34785541031158847846089698897, 5.53167245173770478134265532752, 6.07695144800745119247101561474, 7.38897701911000281200115001990, 7.75671496826380939474770842200, 8.716302662538766670762412431908

Graph of the $Z$-function along the critical line