Properties

Label 2-1512-1.1-c3-0-31
Degree $2$
Conductor $1512$
Sign $1$
Analytic cond. $89.2108$
Root an. cond. $9.44515$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·5-s + 7·7-s + 48·11-s − 39·13-s + 11·17-s − 74·19-s + 25·23-s + 131·25-s + 265·29-s + 91·31-s + 112·35-s − 54·37-s − 22·41-s + 173·43-s + 310·47-s + 49·49-s − 113·53-s + 768·55-s + 639·59-s + 478·61-s − 624·65-s − 831·67-s − 729·71-s + 178·73-s + 336·77-s − 1.04e3·79-s + 60·83-s + ⋯
L(s)  = 1  + 1.43·5-s + 0.377·7-s + 1.31·11-s − 0.832·13-s + 0.156·17-s − 0.893·19-s + 0.226·23-s + 1.04·25-s + 1.69·29-s + 0.527·31-s + 0.540·35-s − 0.239·37-s − 0.0838·41-s + 0.613·43-s + 0.962·47-s + 1/7·49-s − 0.292·53-s + 1.88·55-s + 1.41·59-s + 1.00·61-s − 1.19·65-s − 1.51·67-s − 1.21·71-s + 0.285·73-s + 0.497·77-s − 1.48·79-s + 0.0793·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(89.2108\)
Root analytic conductor: \(9.44515\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.437690227\)
\(L(\frac12)\) \(\approx\) \(3.437690227\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p T \)
good5 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 - 48 T + p^{3} T^{2} \)
13 \( 1 + 3 p T + p^{3} T^{2} \)
17 \( 1 - 11 T + p^{3} T^{2} \)
19 \( 1 + 74 T + p^{3} T^{2} \)
23 \( 1 - 25 T + p^{3} T^{2} \)
29 \( 1 - 265 T + p^{3} T^{2} \)
31 \( 1 - 91 T + p^{3} T^{2} \)
37 \( 1 + 54 T + p^{3} T^{2} \)
41 \( 1 + 22 T + p^{3} T^{2} \)
43 \( 1 - 173 T + p^{3} T^{2} \)
47 \( 1 - 310 T + p^{3} T^{2} \)
53 \( 1 + 113 T + p^{3} T^{2} \)
59 \( 1 - 639 T + p^{3} T^{2} \)
61 \( 1 - 478 T + p^{3} T^{2} \)
67 \( 1 + 831 T + p^{3} T^{2} \)
71 \( 1 + 729 T + p^{3} T^{2} \)
73 \( 1 - 178 T + p^{3} T^{2} \)
79 \( 1 + 1046 T + p^{3} T^{2} \)
83 \( 1 - 60 T + p^{3} T^{2} \)
89 \( 1 - 191 T + p^{3} T^{2} \)
97 \( 1 - 1576 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.041798997306682493850571411478, −8.609829052132717106228665205190, −7.35897696013587178569893428986, −6.53046334075772985084845428369, −5.95510951454772306208792623838, −4.96799733251776559330260614703, −4.17782205190640191895510737858, −2.77780685727898795484093378126, −1.92526768428735194844152509660, −0.956015491852548421172638978694, 0.956015491852548421172638978694, 1.92526768428735194844152509660, 2.77780685727898795484093378126, 4.17782205190640191895510737858, 4.96799733251776559330260614703, 5.95510951454772306208792623838, 6.53046334075772985084845428369, 7.35897696013587178569893428986, 8.609829052132717106228665205190, 9.041798997306682493850571411478

Graph of the $Z$-function along the critical line