L(s) = 1 | + (−6.77 − 6.77i)2-s + (3.70 − 15.1i)3-s + 59.9i·4-s + (−52.1 + 20.0i)5-s + (−127. + 77.5i)6-s + (47.9 − 47.9i)7-s + (189. − 189. i)8-s + (−215. − 112. i)9-s + (489. + 217. i)10-s − 234. i·11-s + (907. + 221. i)12-s + (−723. − 723. i)13-s − 650.·14-s + (110. + 864. i)15-s − 649.·16-s + (335. + 335. i)17-s + ⋯ |
L(s) = 1 | + (−1.19 − 1.19i)2-s + (0.237 − 0.971i)3-s + 1.87i·4-s + (−0.933 + 0.359i)5-s + (−1.44 + 0.879i)6-s + (0.370 − 0.370i)7-s + (1.04 − 1.04i)8-s + (−0.887 − 0.461i)9-s + (1.54 + 0.687i)10-s − 0.585i·11-s + (1.81 + 0.444i)12-s + (−1.18 − 1.18i)13-s − 0.886·14-s + (0.127 + 0.991i)15-s − 0.633·16-s + (0.281 + 0.281i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.910 - 0.413i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.910 - 0.413i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.100899 + 0.466458i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.100899 + 0.466458i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-3.70 + 15.1i)T \) |
| 5 | \( 1 + (52.1 - 20.0i)T \) |
good | 2 | \( 1 + (6.77 + 6.77i)T + 32iT^{2} \) |
| 7 | \( 1 + (-47.9 + 47.9i)T - 1.68e4iT^{2} \) |
| 11 | \( 1 + 234. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + (723. + 723. i)T + 3.71e5iT^{2} \) |
| 17 | \( 1 + (-335. - 335. i)T + 1.41e6iT^{2} \) |
| 19 | \( 1 - 92.0iT - 2.47e6T^{2} \) |
| 23 | \( 1 + (-2.14e3 + 2.14e3i)T - 6.43e6iT^{2} \) |
| 29 | \( 1 - 996.T + 2.05e7T^{2} \) |
| 31 | \( 1 - 2.52e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + (-2.46e3 + 2.46e3i)T - 6.93e7iT^{2} \) |
| 41 | \( 1 - 2.75e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + (6.54e3 + 6.54e3i)T + 1.47e8iT^{2} \) |
| 47 | \( 1 + (449. + 449. i)T + 2.29e8iT^{2} \) |
| 53 | \( 1 + (-9.02e3 + 9.02e3i)T - 4.18e8iT^{2} \) |
| 59 | \( 1 - 5.80e3T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.71e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + (4.35e4 - 4.35e4i)T - 1.35e9iT^{2} \) |
| 71 | \( 1 + 5.54e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + (2.61e4 + 2.61e4i)T + 2.07e9iT^{2} \) |
| 79 | \( 1 + 2.37e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 + (6.35e4 - 6.35e4i)T - 3.93e9iT^{2} \) |
| 89 | \( 1 - 2.37e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + (-8.07e4 + 8.07e4i)T - 8.58e9iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.01582601511313499395423806716, −16.94286551808512777075163290465, −14.72638109904039325616815858995, −12.75134734563734052226010551911, −11.69541955912700556894938078041, −10.48019260237190394658731631649, −8.462489008115812858846427003873, −7.48771151644215281961914583141, −2.93164148835353575677945934522, −0.57828508363726777604921313751,
4.89784831786619883757277028005, 7.35740858159864348173369900188, 8.726700322860298188403224234389, 9.790910915028547281459818830835, 11.65760171122092781970745295187, 14.58900775038885582937816621412, 15.36253074782372232996009573645, 16.42020459733971603083184815413, 17.30744678450370299460702215918, 18.96372580226461342964861499114