L(s) = 1 | + (−60.8 + 35.1i)3-s + (978. + 564. i)5-s + (−807. + 1.39e3i)9-s + (4.40e3 + 7.63e3i)11-s − 1.37e4i·13-s − 7.94e4·15-s + (−4.46e4 + 2.57e4i)17-s + (−1.61e5 − 9.31e4i)19-s + (2.89e4 − 5.02e4i)23-s + (4.42e5 + 7.66e5i)25-s − 5.75e5i·27-s − 1.15e6·29-s + (−8.76e5 + 5.06e5i)31-s + (−5.36e5 − 3.09e5i)33-s + (8.73e5 − 1.51e6i)37-s + ⋯ |
L(s) = 1 | + (−0.751 + 0.434i)3-s + (1.56 + 0.903i)5-s + (−0.123 + 0.213i)9-s + (0.301 + 0.521i)11-s − 0.480i·13-s − 1.56·15-s + (−0.534 + 0.308i)17-s + (−1.23 − 0.714i)19-s + (0.103 − 0.179i)23-s + (1.13 + 1.96i)25-s − 1.08i·27-s − 1.63·29-s + (−0.949 + 0.548i)31-s + (−0.452 − 0.261i)33-s + (0.465 − 0.806i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.769 + 0.638i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.769 + 0.638i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.4855809630\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4855809630\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (60.8 - 35.1i)T + (3.28e3 - 5.68e3i)T^{2} \) |
| 5 | \( 1 + (-978. - 564. i)T + (1.95e5 + 3.38e5i)T^{2} \) |
| 11 | \( 1 + (-4.40e3 - 7.63e3i)T + (-1.07e8 + 1.85e8i)T^{2} \) |
| 13 | \( 1 + 1.37e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + (4.46e4 - 2.57e4i)T + (3.48e9 - 6.04e9i)T^{2} \) |
| 19 | \( 1 + (1.61e5 + 9.31e4i)T + (8.49e9 + 1.47e10i)T^{2} \) |
| 23 | \( 1 + (-2.89e4 + 5.02e4i)T + (-3.91e10 - 6.78e10i)T^{2} \) |
| 29 | \( 1 + 1.15e6T + 5.00e11T^{2} \) |
| 31 | \( 1 + (8.76e5 - 5.06e5i)T + (4.26e11 - 7.38e11i)T^{2} \) |
| 37 | \( 1 + (-8.73e5 + 1.51e6i)T + (-1.75e12 - 3.04e12i)T^{2} \) |
| 41 | \( 1 - 5.16e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 3.66e6T + 1.16e13T^{2} \) |
| 47 | \( 1 + (-4.92e6 - 2.84e6i)T + (1.19e13 + 2.06e13i)T^{2} \) |
| 53 | \( 1 + (3.25e5 + 5.63e5i)T + (-3.11e13 + 5.39e13i)T^{2} \) |
| 59 | \( 1 + (-5.14e6 + 2.96e6i)T + (7.34e13 - 1.27e14i)T^{2} \) |
| 61 | \( 1 + (2.11e6 + 1.22e6i)T + (9.58e13 + 1.66e14i)T^{2} \) |
| 67 | \( 1 + (1.42e7 + 2.45e7i)T + (-2.03e14 + 3.51e14i)T^{2} \) |
| 71 | \( 1 + 4.03e7T + 6.45e14T^{2} \) |
| 73 | \( 1 + (2.22e7 - 1.28e7i)T + (4.03e14 - 6.98e14i)T^{2} \) |
| 79 | \( 1 + (1.61e7 - 2.80e7i)T + (-7.58e14 - 1.31e15i)T^{2} \) |
| 83 | \( 1 + 7.88e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + (8.51e7 + 4.91e7i)T + (1.96e15 + 3.40e15i)T^{2} \) |
| 97 | \( 1 - 1.53e8iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07791378433288970334377500445, −10.80281869299305719858271377760, −9.842304885393993513544155323559, −8.970740602584431158446540212612, −7.29721380053312717632982045903, −6.22868892751420619651189792855, −5.61477956006184486290061796496, −4.40914002388626714177387905021, −2.69627998968745248047622650647, −1.77002965231194363854574247456,
0.11520809871795932364111555504, 1.28841826839831701509544429990, 2.19614669303258787603873095117, 4.13341651645152785799557155525, 5.61903345318857405063528889692, 5.91994846881297657191273940164, 7.05278918479652362620726801157, 8.789725357754037864495257583535, 9.244318533749209399122401778717, 10.46462184058789626032858250691